The synthesis, structure and photophysical properties of a series of highly emissive europium complexes is reported. Certain complexes enter mammalian cells by
The synthesis of a novel Tb(III) luminescent probe for the detection of thiols is presented. The probe 1.Tb, possessing a maleimide moiety, as its sulfhydryl acceptor, was poorly emitting in aqueous pH 7 solution in the absence of a thiol. However, upon addition of thiols such as glutathione (GSH), large enhancements were observed, particularly within the physiological pH range. In contrast no enhancements were observed in the presence of the oxidized form of glutathione (GSSG), except in the presence of the enzyme glutathione reductase and NADPH which enabled 1.Tb to be used to observe the enzymatic reduction of GSSG to GSH in real time.
Publisher's copyright statement:Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. FRS (1932FRS ( -2014 The development of the brightest luminescent europium(III) complexes is traced, including analysis of the C 3 -symmetric core complex based on a functionalized triazacyclononane and identification of the most suitable strongly absorbing chromophore. Strategies for the synthesis of the complexes, including enantiopure analogues, are outlined and opportunities for applications in time-resolved microscopy and spectral imaging emphasised. Practicable examples are introduced, including selective organelle staining for cellular optical imaging at 65 nm resolution and the development of new bioassays using time-resolved FRET methods.
Europium and terbium complexes of two structurally related ligands have been evaluated as optical probes to monitor changes in lysosomal pH; calibration using ionophores and fluorescent probes allows monitoring of the time dependence of lysosomal pH change, examining the green/red intensity ratio from internalised Tb-Eu complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.