The individual alpha peak frequency (IAPF) of the human electroencephalography (EEG) typically experiences slowing with increasing age. Despite this hallmark change, studies that investigate modulations of conventional EEG alpha power and connectivity by aging and age-related neuropathology neglect to account for intergroup differences in IAPF. To investigate the relationship of age-related IAPF slowing with EEG power and connectivity, we recorded eyes-closed resting-state EEG in 37 young adults and 32 older adults. We replicated the finding of a slowed IAPF in older adults. IAPF values were significantly correlated with the frequency of maximum global connectivity and the means of their distributions did not differ, suggesting that connectivity was highest at the IAPF. Older adults expressed reduced global EEG power and connectivity at the conventional upper alpha band (10-12 Hz) compared with young adults. By contrast, groups had equivalent power and connectivity at the IAPF. The results suggest that conventional spectral boundaries may be biased against older adults or any group with a slowed IAPF. We conclude that investigations of alpha activity in aging and age-related neuropathology should be adapted to the IAPF of the individual and that previous findings should be interpreted with caution. EEG in the dominant alpha range may be unsuitable for examining cortico-cortical connectivity due to its subcortical origins.
Objective: This study aimed to produce a novel Deep Learning (DL) model for the classification of subjects with Alzheimer's Disease (AD), Mild Cognitive Impairment (MCI) subjects and Healthy Ageing (HA) subjects using resting-state scalp EEG signals.Approach: The raw EEG data were pre-processed to remove unwanted artefacts and sources of noise. The data were then processed with the Continuous Wavelet Transform (CWT), using the Morse mother wavelet, to create time-frequency graphs with a wavelet coefficient scale range of 0 to 600. The graphs were combined into tiled topographical maps governed by the 10-20 system orientation for scalp electrodes. The application of this processing pipeline was used on a data set of resting-state EEG samples from age-matched groups of 52 AD subjects (82.3 ± 4.7 years of age), 37 MCI subjects (78.4 ± 5.1 years of age) and 52 HA subjects (79.6 ± 6.0 years of age). This resulted in the formation of a data set of 16,197 topographical images. This image data set was then split into training, validation and test images and used as input to an AlexNet DL model. This model was comprised of 5 hidden convolutional layers and optimised for various parameters such as learning rate, learning rate schedule, optimiser, and batch size.Main Results: The performance was assessed by a 10-fold cross-validation strategy, which produced an average accuracy result of 98.9% ± 0.4% for the three-class classification of AD vs. MCI vs. HA. The results showed minimal overfitting and bias between classes, further indicating the strength of the model produced.Significance: These results provide significant improvement for this classification task compared to previous studies in this field and suggest that DL could contribute to the diagnosis of AD from EEG recordings.
Older adults typically experience reductions in the structural integrity of the anterior channels of the corpus callosum. Despite preserved structural integrity in central and posterior channels, many studies have reported that interhemispheric transfer, a function attributed to these regions, is detrimentally affected by aging. In this study, we use a constrained event-related potential analysis in the theta and alpha frequency bands to determine whether interhemispheric transfer is affected in older adults. The crossed-uncrossed difference and lateralized visual evoked potentials were used to assess interhemispheric transfer in young (18-27) and older adults (63-80). We observed no differences in the crossed-uncrossed difference measure between young and older groups. Older adults appeared to have elongated transfer in the theta band potentials, but this effect was driven by shortened contralateral peak latencies, rather than delayed ipsilateral latencies. In the alpha band, there was a trend toward quicker transfer in older adults. We conclude that older adults do not experience elongated interhemispheric transfer in the visuomotor or visual domains and that these functions are likely attributed to posterior sections of the corpus callosum, which are unaffected by aging.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.