Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing.
Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.
Activity-dependent translation requires the transport of mRNAs within membraneless protein assemblies known as neuronal granules from the cell body toward synaptic regions. Translation of mRNA is inhibited in these granules during transport but quickly activated in response to neuronal stimuli at the synapse. This raises an important question: how does synaptic activity trigger translation of once-silenced mRNAs? Here, we demonstrate a strong connection between phase separation, the process underlying the formation of many different types of cellular granules, and in vitro inhibition of translation. By using the Fragile X Mental Retardation Protein (FMRP), an abundant neuronal granule component and translational repressor, we show that FMRP phase separates in vitro with RNA into liquid droplets mediated by its C-terminal low-complexity disordered region (i.e., FMRPLCR). FMRPLCRposttranslational modifications by phosphorylation and methylation have opposing effects on in vitro translational regulation, which corroborates well with their critical concentrations for phase separation. Our results, combined with bioinformatics evidence, are supportive of phase separation as a general mechanism controlling activity-dependent translation.
Membraneless organelles involved in RNA processing are biomolecular condensates assembled by phase separation. Despite the important role of intrinsically disordered protein regions (IDRs), the specific interactions underlying IDR phase separation and its functional consequences remain elusive. To address these questions, we used minimal condensates formed from the C-terminal disordered regions of two interacting translational regulators, FMRP and CAPRIN1. Nuclear magnetic resonance spectroscopy of FMRP-CAPRIN1 condensates revealed interactions involving arginine-rich and aromatic-rich regions. We found that different FMRP serine/threonine and CAPRIN1 tyrosine phosphorylation patterns control phase separation propensity with RNA, including subcompartmentalization, and tune deadenylation and translation rates in vitro. The resulting evidence for residue-specific interactions underlying co–phase separation, phosphorylation-modulated condensate architecture, and enzymatic activity within condensates has implications for how the integration of signaling pathways controls RNA processing and translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.