Redox potentials often differ dramatically for homologous proteins that have identical redox centers. For two types of iron-sulfur proteins, the rubredoxins and the high-potential iron-sulfur proteins (HiPIPs), no structural explanations for these differences have been found. We calculated the classical electrostatic potential at the redox site using static crystal structures of four rubredoxins and four HiPIPs to identify important structural determinants of their redox potentials. The contributions from just the backbone and polar side chains are shown to explain major features of the experimental redox potentials. For instance, in the rubredoxins, the presence of Val 44 versus Ala 44 causes a backbone shift that explains a approximately 50 mV lower redox potential in one of the four rubredoxins. This result is consistent with experimental redox potentials of five additional rubredoxins with known sequence. Also, we attribute the unusually lower redox potentials of two of the HiPIPs studied to a less positive electrostatic environment around their redox sites. Finally, molecular dynamics simulations of solvent around static rubredoxin crystal structures indicate that water alone is a major factor in dampening the contribution of charged side chains, in accord with experiments showing that mutations of surface charges produce relatively little effect on redox potentials.
A sequence determinant of reduction potentials is reported for bacterial [4Fe-4S]-type ferredoxins. The residue that is four residues C-terminal to the fourth ligand of either cluster is generally an alanine or a cysteine. In five experimental ferredoxin structures, the cysteine has the same structural orientation relative to the nearest cluster, which is stabilized by the SH...S bond. Although such bonds are generally considered weak, indications that Fe-S redox site sulfurs are better hydrogen-bond acceptors than most sulfurs include the numerous amide NH...S bonds noted by Adman and our quantum mechanical calculations. Furthermore, electrostatic potential calculations of 11 experimental ferredoxin structures indicate that the extra cysteine decreases the reduction potential relative to an alanine by approximately 60 mV, in agreement with experimental mutational studies. Moreover, the decrease in potential is due to a shift in the polar backbone stabilized by the SH...S bond rather than to the slightly polar cysteinyl side chain. Thus, these cysteines can "tune" the reduction potential, which could optimize electron flow in an electron transport chain. More generally, hydrogen bonds involving sulfur can be important in protein structure/function, and mutations causing polar backbone shifts can alter electrostatics and thus affect redox properties or even enzymatic activity of a protein.
In the presence of ATP, unphosphorylated smooth muscle myosin can form a catalytically inactive monomer that sediments at 10 Svedbergs (10 S). The tail of 10 S bends into thirds and interacts with the regulatory domain. ADP-P i is "trapped" at the active site, and consequently the ATPase activity is extremely low. We are interested in the structural basis for maintenance of this off state. Our prior photocross-linking work with 10 S showed that tail residues 1554 -1583 are proximal to position 108 in the C-terminal lobe of one of the two regulatory light chains (Olney, J. J., Sellers, J. R., and Cremo, C. R. (1996) J. Biol. Chem. 271, 20375-20384). These data suggested that the tail interacts with only one of the two regulatory light chains. Here we present data, using a photocross-linker on position 59 on the N-terminal lobe of the regulatory light chain (RLC), demonstrating that both regulatory light chains of a single molecule can cross-link to the light meromyosin portion of the tail. Mass spectrometric data show four specific cross-linked regions spanning residues 1428 -1571 in the light meromyosin portion of the tail, consistent with cross-linking two RLC to one light meromyosin. In addition, we find that position 59 can cross-link internally to residues 42-45 within the same RLC subunit. The internal cross-link only forms in 10 S and not in unphosphorylated heavy meromyosin (lacking the light meromyosin), suggesting a structural rearrangement within the RLC attributed to the interaction of the tail with the head.
Substitution of different metals into the redox sites of metalloproteins is a means of studying the structure of the native protein and of varying the redox properties of the protein. The implicit assumption is often made that metal substitution changes only intrinsic properties of the redox site such as the ionization potential without altering the surrounding protein or solvent. However, if this is not true, structural studies of metal-substituted proteins will not reflect the native protein and the differences in redox potential upon metal substitution will not be simply the differences in ionization potential of the redox sites because of perturbations in the extrinsic electric field. Here, we present an ab initio unrestricted Hartree−Fock quantum mechanical study of metal substitution in the [M(SCH3)4)]2-/1- analogue, where M = Fe, Co, Ni, and Zn, of the protein rubredoxin. Variations in several physical properties were determined and compared to experimental data. Upon metal substitution, only minor variations in geometry, atomic spin, and atom-centered partial charges of the redox site are observed. However, significant variation is found in the energies of reduction, on the order of 100−1000 mV. This indicates that when such substitutions are made into an Fe−S metalloprotein, little change will occur in the interactions between the metal site and the surrounding protein and thus the surrounding protein structure and the resultant electric field will not change. Thus, the structure is relevant to the native protein and the redox properties are mainly determined by the variations in the intrinsic ionization potential of the metal site and not the extrinsic field of the surrounding protein and solvent.
The protein matrix of an electron transfer protein creates an electrostatic environment for its redox site, which influences its electron transfer properties. Our studies of Fe-S proteins indicate that the protein is highly polarized around the redox site. Here, measures of deviations of the environmental electrostatic potential from a simple linear dielectric polarization response to the magnitude of the charge are proposed. In addition, a decomposition of the potential is proposed here to describe the apparent deviations from linearity, in which it is divided into a "permanent" component that is independent of the redox site charge and a dielectric component that linearly responds or polarizes to the charge. The nonlinearity measures and the decomposition were calculated for Clostridium pasteurianum rubredoxin from molecular dynamics simulations. The potential in rubredoxin is greater than expected from linear response theory, which implies it is a better electron acceptor than a redox site analog in a solvent with a dielectric constant equivalent to that of the protein. In addition, the potential in rubredoxin is described well by a permanent potential plus a linear response component. This permanent potential allows the protein matrix to create a favorable driving force with a low activation barrier for accepting electrons. The results here also suggest that the reduction potential of rubredoxin is determined mainly by the backbone and not the side chains, and that the redox site charge of rubredoxin may help to direct its folding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.