Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.
We have biologically characterized two new members of the IL-17 cytokine family: IL-17F and IL-25. In contrast to conventional in vitro screening approaches, we have characterized the activity of these new molecules by direct in vivo analysis and have compared their function to that of other IL-17 family members. Intranasal administration of adenovirus expressing IL-17, IL-17C, or IL-17F resulted in bronchoalveolar lavage neutrophilia and inflammatory gene expression in the lung. In contrast, intranasal administration of IL-25-expressing adenovirus or IL-25 protein resulted in the production of IL-4, IL-5, IL-13, and eotaxin mRNA in the lung and marked eosinophilia in the bronchoalveolar lavage and lung tissue. Mice given intranasal IL-25 also developed epithelial cell hyperplasia, increased mucus secretion, and airway hyperreactivity. IL-25 gene expression was detected following Aspergillus and Nippostrongylus infection in the lung and gut, respectively. IL-25-induced eosinophilia required IL-5 and IL-13, but not IL-4 or T cells. Following IL-25 administration, the IL-5+ staining cells were CD45R/B220+, Thy-1+/−, but were NK1.1-, Ly-6G(GR-1)-, CD4-, CD3-, and c-kit-negative. γ-common knockout mice did not develop eosinophilia in response to IL-25, nor were IL-5+ cells detected. These findings suggest the existence of a previously unrecognized cell population that may initiate Th2-like responses by responding to IL-25 in vivo. Further, these data demonstrate the heterogeneity of function within the IL-17 cytokine family and suggest that IL-25 may be an important mediator of allergic disease via production of IL-4, IL-5, IL-13, and eotaxin.
When rodents are infected with the nematode Nippostrongylus brasiliensis, large numbers of eosinophils appear in their blood and lungs and their serum immunoglobulin E (IgE) is increased. Injection of a monoclonal antibody to interleukin-5 completely suppressed the blood eosinophilia and the infiltration of eosinophils in the lungs of parasitized mice but had no effect on serum IgE. In contrast, an antibody to interleukin-4 inhibited parasite-induced IgE but not the eosinophilia. These results show that interleukin-5 is important in eosinophil production in vivo and that IgE and eosinophil production are regulated by different cytokines produced by the TH2 subset of CD4-expressing T cells.
We have used interleukin-10 (IL-10) gene knockout mice (IL-10−/−) to examine the role of endogenous IL-10 in allergic lung responses to Aspergillus fumigatus Ag. In vitro restimulated lung cells from sensitized IL-10−/− mice produced exaggerated amounts of IL-4, IL-5, and interferon-γ (IFN-γ) compared with wild-type (WT) lung cells. In vivo, the significance of IL-10 in regulating responses to repeated A. fumigatus inhalation was strikingly revealed in IL-10−/− outbred mice that had a 50–60% mortality rate, while mortality was rare in similarly treated WT mice. Furthermore, IL-10−/− outbred mice exhibited exaggerated airway inflammation and heightened levels of IL-5 and IFN-γ in bronchoalveolar lavage (BAL) fluids. In contrast, the magnitude of the allergic lung response was similar in intranasally (i.n.) sensitized IL-10−/− and wild-type mice from a different strain (C57BL/6). Using a different route of priming (intraperitoneal) followed by one i.n. challenge we found that IL-10−/− C57BL/6 mice had heightened eosinophilic airway inflammation, BAL–IL-5 levels, and numbers of αβT cells in the lung tissues compared with WT mice. We conclude that IL-10 can suppress inflammatory Th2-like lung responses as well as Th1-like responses given the constraints of genetic background and route of priming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.