The addition of TGF-beta to cultures of LPS-stimulated murine B cells causes a approximately 10-fold enhancement of IgA production, yet causes a 10-fold decrease in total Ig production. IL-2 and, to a lesser extent, IL-5 synergize with TGF-beta to further enhance IgA production and partially reverse the inhibition of total Ig production. IgA constitutes only approximately 0.1% of total Ig in LPS-stimulated cultures, but that percentage rises to 15-25% in cultures to which TGF-beta and IL-2 are added. TGF-beta induces a substantial increase in IgA production from sIgA- B cells but inhibits IgA production by sIgA+ cells. This finding suggests that TGF-beta acts as an isotype-specific switch factor for IgA.
SummaryInterleukin 4 (11,4)-induced IgE production coincides with the appearance of the 2.2-kb productive e-mRNA, but is preceded by synthesis of a 1 .7-kb e-RNA. Analysis of cDNA copies of the 5' end of this RNA indicated that the 1.7-kb E-RNA is a germline e immunoglobulin heavy chain transcript with an exon mapping 5' to the switch region . Transcription through switch regions has been implicated in the control of class switching . However, IL4 or cloned CD4+ T cells were able to induce germline e transcripts without inducing IgE synthesis, for which both signals were required. These results indicate that induction of human germline e-RNA does not necessarily result in IgE synthesis, and that additional regulatory mechanisms are involved in class switching.
Although it has been established that IL-4 enhances both IgG1 and IgE secretion in LPS-stimulated B cell cultures, these studies failed to determine whether IL-4 preferentially induces isotype switching or preferentially allows for the maturation of precommitted precursor cells. To distinguish between these possibilities, it is necessary to ascertain the effect of IL-4 on the isotypes secreted by individual precursor cells during clonal expansion. Therefore, clonal cultures of B cells stimulated with a Th2 helper cell line specific for rabbit Ig and rabbit anti-mouse IgM were established. The majority of B cells are capable of undergoing clonal expansion under these conditions. To vary the level of IL-4 present, either IL-4 or anti-IL-4 was added to cultures. In the presence of IL-4 there was an increase in the proportion of clones that secreted IgE and a decrease in the proportion of clones that secreted IgM. The addition of IL-4 to cultures also increased the amount of IgE secreted by individual clones. Thus, these experiments definitively prove that IL-4 causes specific heavy chain class switching to IgE in Th2-stimulated B cell cultures. In contrast, IL-4 does not affect the proportion of clones secreting IgG1, suggesting that other consequences of Th cell-B cell interactions play a role in the generation of an IgG1 response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.