Local area community cumulative incidence (per 1,000 population) Health care personnel with positive test results for SARS-CoV-2 antibodies (%) Abbreviation: COVID-19 = coronavirus disease 2019. * Calculated as the total number of reported community COVID-19 cases within a hospital-area county or counties between the beginning of the pandemic and 7 days after the first day of health care personnel enrollment at the hospital divided by population of the county or counties x 1,000.
Background SARS-CoV-2, the virus that causes COVID-19 disease, was first identified in Wuhan, China in December 2019, with subsequent worldwide spread. The first U.S. cases were identified in January 2020. Methods To determine if SARS-CoV-2 reactive antibodies were present in sera prior to the first identified case in the U.S. on January 19, 2020, residual archived samples from 7,389 routine blood donations collected by the American Red Cross from December 13, 2019 to January 17, 2020, from donors resident in nine states (California, Connecticut, Iowa, Massachusetts, Michigan, Oregon, Rhode Island, Washington, and Wisconsin) were tested at CDC for anti-SARS-CoV-2 antibodies. Specimens reactive by pan-immunoglobulin (pan Ig) enzyme linked immunosorbent assay (ELISA) against the full spike protein were tested by IgG and IgM ELISAs, microneutralization test, Ortho total Ig S1 ELISA, and receptor binding domain / Ace2 blocking activity assay. Results Of the 7,389 samples, 106 were reactive by pan Ig. Of these 106 specimens, 90 were available for further testing. Eighty four of 90 had neutralizing activity, 1 had S1 binding activity, and 1 had receptor binding domain / Ace2 blocking activity >50%, suggesting the presence of anti-SARS-CoV-2-reactive antibodies. Donations with reactivity occurred in all nine states. Conclusions These findings suggest that SARS-CoV-2 may have been introduced into the United States prior to January 19, 2020.
IMPORTANCEAs self-collected home antigen tests become widely available, a better understanding of their performance during the course of SARS-CoV-2 infection is needed. OBJECTIVE To evaluate the diagnostic performance of home antigen tests compared with reverse transcription-polymerase chain reaction (RT-PCR) and viral culture by days from illness onset, as well as user acceptability. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted from January to May 2021 in San Diego County, California, and metropolitan Denver, Colorado. The convenience sample included adults and children with RT-PCR-confirmed infection who used self-collected home antigen tests for 15 days and underwent at least 1 nasopharyngeal swab for RT-PCR, viral culture, and sequencing. EXPOSURES SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES The primary outcome was the daily sensitivity of home antigen tests to detect RT-PCR-confirmed cases. Secondary outcomes included the daily percentage of antigen test, RT-PCR, and viral culture results that were positive, and antigen test sensitivity compared with same-day RT-PCR and cultures. Antigen test use errors and acceptability were assessed for a subset of participants. RESULTS This study enrolled 225 persons with RT-PCR-confirmed infection (median [range] age, 29 [1-83] years; 117 female participants [52%]; 10 [4%] Asian, 6 [3%] Black or African American, 50 [22%] Hispanic or Latino, 3 [1%] Native Hawaiian or Other Pacific Islander, 145[64%] White, and 11 [5%] multiracial individuals) who completed 3044 antigen tests and 642 nasopharyngeal swabs. Antigen test sensitivity was 50% (95% CI, 45%-55%) during the infectious period, 64% (95% CI, 56%-70%) compared with same-day RT-PCR, and 84% (95% CI, 75%-90%) compared with same-day cultures. Antigen test sensitivity peaked 4 days after illness onset at 77% (95% CI, 69%-83%). Antigen test sensitivity improved with a second antigen test 1 to 2 days later, particularly early in the infection. Six days after illness onset, antigen test result positivity was 61% (95% CI, 53%-68%). Almost all (216 [96%]) surveyed individuals reported that they would be more likely to get tested for SARS-CoV-2 infection if home antigen tests were available over the counter. CONCLUSIONS AND RELEVANCEThe results of this cohort study of home antigen tests suggest that sensitivity for SARS-CoV-2 was moderate compared with RT-PCR and high compared with viral culture. The results also suggest that symptomatic individuals with an initial negative home antigen test result for SARS-CoV-2 infection should test again 1 to 2 days later because test sensitivity peaked several days after illness onset and improved with repeated testing.
Francisella tularensis , the causative agent of the zoonotic disease tularemia, is characterized by high morbidity and mortality rates in over 190 different mammalian species, including humans. Based on its low infectious dose, multiple routes of infection, and ability to induce rapid and lethal disease, F. tularensis has been recognized as a severe public health threat—being designated as a NIH Category A Priority Pathogen and a CDC Tier 1 Select Agent. Despite concerns over its use as a bioweapon, most U.S. tularemia cases are tick-mediated and ticks are believed to be the major environmental reservoir for F. tularensis in the U.S. The American dog tick ( Dermacentor variabilis ) has been reported to be the primary tick vector for F. tularensis , but the lone star tick ( Amblyomma americanum ) and other tick species also have been shown to harbor F. tularensis . This review highlights what is known, not known, and is debated, about the roles of different tick species as environmental reservoirs and transmission vectors for a variety of F. tularensis genotypes/strains.
Francisella tularensis is a Gram‐negative, intracellular bacterium that causes the zoonotic disease tularemia. Intracellular pathogens, including F. tularensis, have evolved mechanisms to survive in the harsh environment of macrophages and neutrophils, where they are exposed to cell envelope‐damaging molecules. The bacterial cell wall, primarily composed of peptidoglycan (PG), maintains cell morphology, structure, and membrane integrity. Intracellular Gram‐negative bacteria protect themselves from macrophage and neutrophil killing by recycling and repairing damaged PG––a process that involves over 50 different PG synthesis and recycling enzymes. Here, we identified a PG recycling enzyme, L,D‐carboxypeptidase A (LdcA), of F. tularensis that is responsible for converting PG tetrapeptide stems to tripeptide stems. Unlike E. coli LdcA and most other orthologs, F. tularensis LdcA does not localize to the cytoplasm and also exhibits L,D‐endopeptidase activity, converting PG pentapeptide stems to tripeptide stems. Loss of F. tularensis LdcA led to altered cell morphology and membrane integrity, as well as attenuation in a mouse pulmonary infection model and in primary and immortalized macrophages. Finally, an F. tularensis ldcA mutant protected mice against virulent Type A F. tularensis SchuS4 pulmonary challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.