This systematic review assessed the global impact and effectiveness of quadrivalent human papillomavirus (HPV) vaccination on HPV infection and disease in real-world settings over a decade of use. Substantial reductions in HPV 6/11/16/18 infection, anogenital warts, and cervical lesions have been achieved.
BackgroundDiarrheal diseases continue to contribute significantly to morbidity and mortality in infants and young children in developing countries. There is an urgent need to better understand the contributions of novel, potentially uncultured, diarrheal pathogens to severe diarrheal disease, as well as distortions in normal gut microbiota composition that might facilitate severe disease.ResultsWe use high throughput 16S rRNA gene sequencing to compare fecal microbiota composition in children under five years of age who have been diagnosed with moderate to severe diarrhea (MSD) with the microbiota from diarrhea-free controls. Our study includes 992 children from four low-income countries in West and East Africa, and Southeast Asia. Known pathogens, as well as bacteria currently not considered as important diarrhea-causing pathogens, are positively associated with MSD, and these include Escherichia/Shigella, and Granulicatella species, and Streptococcus mitis/pneumoniae groups. In both cases and controls, there tend to be distinct negative correlations between facultative anaerobic lineages and obligate anaerobic lineages. Overall genus-level microbiota composition exhibit a shift in controls from low to high levels of Prevotella and in MSD cases from high to low levels of Escherichia/Shigella in younger versus older children; however, there was significant variation among many genera by both site and age.ConclusionsOur findings expand the current understanding of microbiota-associated diarrhea pathogenicity in young children from developing countries. Our findings are necessarily based on correlative analyses and must be further validated through epidemiological and molecular techniques.
Estimates of the prevalence of Shigella spp. are limited by the suboptimal sensitivity of current diagnostic and surveillance methods. We used a quantitative PCR (qPCR) assay to detect Shigella in the stool samples of 3,533 children aged <59 months from the Gambia, Mali, Kenya, and Bangladesh, with or without moderate-to-severe diarrhea (MSD). We compared the results from conventional culture to those from qPCR for the Shigella ipaH gene. Using MSD as the reference standard, we determined the optimal cutpoint to be 2.9 ؋ 10 4 ipaH copies per 100 ng of stool DNA for set 1 (n ؍ 877). One hundred fifty-eight (18%) specimens yielded >2.9 ؋ 10 4 ipaH copies. Ninety (10%) specimens were positive by traditional culture for Shigella. Individuals with >2.9 ؋ 10 4 ipaH copies have 5.6-times-higher odds of having diarrhea than those with <2.9 ؋ 10 4 ipaH copies (95% confidence interval, 3.7 to 8.5; P < 0.0001). Nearly identical results were found using an independent set of samples. qPCR detected 155 additional MSD cases with high copy numbers of ipaH, a 90% increase from the 172 cases detected by culture in both samples. Among a subset (n ؍ 2,874) comprising MSD cases and their age-, gender-, and location-matched controls, the fraction of MSD cases that were attributable to Shigella infection increased from 9.6% (n ؍ 129) for culture to 17.6% (n ؍ 262) for qPCR when employing our cutpoint. We suggest that qPCR with a cutpoint of approximately 1.4 ؋ 10 4 ipaH copies be the new reference standard for the detection and diagnosis of shigellosis in children in low-income countries. The acceptance of this new standard would substantially increase the fraction of MSD cases that are attributable to Shigella.
BackgroundEnterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in inhabitants from low-income countries and in visitors to these countries. The impact of the human intestinal microbiota on the initiation and progression of ETEC diarrhea is not yet well understood.ResultsWe used 16S rRNA (ribosomal RNA) gene sequencing to study changes in the fecal microbiota of 12 volunteers during a human challenge study with ETEC (H10407) and subsequent treatment with ciprofloxacin.Five subjects developed severe diarrhea and seven experienced few or no symptoms. Diarrheal symptoms were associated with high concentrations of fecal E. coli as measured by quantitative culture, quantitative PCR, and normalized number of 16S rRNA gene sequences. Large changes in other members of the microbiota varied greatly from individual to individual, whether or not diarrhea occurred. Nonetheless the variation within an individual was small compared to variation between individuals. Ciprofloxacin treatment reorganized microbiota populations; however, the original structure was largely restored at one and three month follow-up visits.ConclusionSymptomatic ETEC infections, but not asymptomatic infections, were associated with high fecal concentrations of E. coli. Both infection and ciprofloxacin treatment caused variable changes in other bacteria that generally reverted to baseline levels after three months.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2777-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.