PIEZO channels are force sensors essential for physiological processes, including baroreception and proprioception. The Caenorhabditis elegans genome encodes an orthologue gene of the Piezo family, pezo-1, which is expressed in several tissues, including the pharynx. This myogenic pump is an essential component of the C. elegans alimentary canal, whose contraction and relaxation are modulated by mechanical stimulation elicited by food content. Whether pezo-1 encodes a mechanosensitive ion channel and contributes to pharyngeal function remains unknown. Here, we leverage genome editing, genetics, microfluidics, and electropharyngeogram recording to establish that pezo-1 is expressed in the pharynx, including in a proprioceptive-like neuron, and regulates pharyngeal function. Knockout (KO) and gain-of-function (GOF) mutants reveal that pezo-1 is involved in fine-tuning pharyngeal pumping frequency, as well as sensing osmolarity and food mechanical properties. Using pressure-clamp experiments in primary C. elegans embryo cultures, we determine that pezo-1 KO cells do not display mechanosensitive currents, whereas cells expressing wild-type or GOF PEZO-1 exhibit mechanosensitivity. Moreover, infecting the Spodoptera frugiperda cell line with a baculovirus containing the G-isoform of pezo-1 (among the longest isoforms) demonstrates that pezo-1 encodes a mechanosensitive channel. Our findings reveal that pezo-1 is a mechanosensitive ion channel that regulates food sensation in worms.
Membrane remodeling by inflammatory mediators influences the function of sensory ion channels. The capsaicin-and heat-activated TRPV1 channel contributes to neurogenic inflammation and pain hypersensitivity, in part due to its potentiation downstream of phospholipase C-coupled receptors that regulate phosphoinositide lipid content. Here, we determined the effect of phosphoinositide lipids on TRPV1 function by combining genetic dissection, diet supplementation, behavioral, biochemical, and functional analyses in Caenorhabditis elegans. As capsaicin elicits hot and pain sensation in mammals, transgenic TRPV1 worms exhibit an aversive response to capsaicin. TRPV1 worms with low levels of phosphoinositide lipids display an enhanced response to capsaicin, whereas phosphoinositide lipid supplementation reduces TRPV1-mediated responses. A worm carrying a TRPV1 construct lacking the distal C-terminal domain features an enhanced response to capsaicin, independent of the phosphoinositide lipid content. Our results demonstrate that TRPV1 activity is enhanced when the phosphoinositide lipid content is reduced, and the C-terminal domain is key to determining agonist response in vivo. 2 Significance Statement TRPV1 is an essential protein for the mechanism whereby noxious stimuli, such as high temperatures and chemicals, cause pain. TRPV1 undergoes sensitization, a process in which inflammatory molecules enhance its response to other stimuli, thereby promoting pain hypersensitivity. Proalgesic agents produced in response to tissue injury activate PLC-coupled receptors and alter the membrane phosphoinositide lipid content. The mechanism by which phosphoinositide lipids modulate TRPV1 function has remained controversial. Determining whether membrane phosphoinositides are positive or negative regulators of TRPV1 function is critical for developing therapeutic strategies to ameliorate TRPV1-mediated inflammatory pain. We address the role of phosphoinositide lipids on TRPV1 function using an in vivo approach and report that phosphoinositide lipids reduce TRPV1 activity in vivo.
PIEZO channels are force sensors essential for physiological processes including baroreception and proprioception. The Caenorhabditis elegans genome encodes an ortholog gene of the Piezo family, pezo-1, expressed in several tissues including the pharynx. This myogenic pump is an essential component of the C. elegans alimentary canal whose contraction and relaxation are modulated by mechanical stimulation elicited by food content. Whether pezo-1 encodes a mechanosensitive channel and contributes to pharyngeal function remains unknown. Here, we leverage genome editing, genetics, microfluidics, and electropharyngeogram recordings to establish that pezo-1 is expressed in the pharynx, including a proprioceptive-like neuron, and regulates pharyngeal function. Knockout (KO) and gain-of-function (GOF) mutants reveal that pezo-1 is involved in fine-tuning pharyngeal pumping frequency, sensing osmolarity, and food quality. Using pressure-clamp experiments in primary C. elegans embryo cultures, we determine that pezo-1 KO cells do not display mechanosensitive currents, whereas cells expressing wild-type or GOF PEZO-1 exhibit mechanosensitivity. Moreover, infecting the Spodoptera frugiperda cell line with a baculovirus containing the pezo-1 isoform G (among the longest isoforms) demonstrates that pezo-1 encodes a mechanosensitive channel. Our findings reveal that pezo-1 is a mechanosensitive ion channel that regulates food sensation in worms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.