Radiation-induced endothelial/vascular injury is a major complicating factor in radiotherapy and a leading cause of morbidity and mortality in nuclear or radiological catastrophes. Exposure of tissue to ionizing radiation (IR) leads to the release of oxygen radicals and proteases that result in loss of endothelial barrier function and leukocyte dysfunction leading to tissue injury and organ damage. Microvascular endothelial cells are particularly sensitive to IR and radiation-induced alterations in endothelial cell function are thought to be a critical factor in organ damage through endothelial cell activation, enhanced leukocyte-endothelial cell interactions, increased barrier permeability and initiation of apoptotic pathways. These radiation-induced inflammatory responses are important in early and late radiation pathologies in various organs. A better understanding of mechanisms of radiation-induced endothelium dysfunction is therefore vital, as radiobiological response of endothelium is of major importance for medical management and therapeutic development for radiation injuries. In this review, we summarize the current knowledge of cellular and molecular mechanisms of radiation-induced endothelium damage and their impact on early and late radiation injury. Furthermore, we review established and emerging in vivo and in vitro models that have been developed to study the mechanisms of radiation-induced endothelium damage and to design, develop and rapidly screen therapeutics for treatment of radiation-induced vascular damage. Currently there are no specific therapeutics available to protect against radiation-induced loss of endothelial barrier function, leukocyte dysfunction and resulting organ damage. Developing therapeutics to prevent endothelium dysfunction and normal tissue damage during radiotherapy can serve as the urgently needed medical countermeasures.
Umbilical skin metastases (or Sister Mary Joseph nodules) are rare. Their presence typically indicates the late manifestation of deep-seated abdominopelvic malignancy. They occur mainly in gynecological cancers, and gastrointestinal cancers in men. The most common histology is adenocarcinoma (∼75% of cases), but it can also rarely be squamous cell or undifferentiated carcinoma. These metastases can be present at diagnosis or appear at disease recurrence, and are associated with a very poor prognosis with an average survival of 11 months. We report the clinical case of a 58-year-old man with metastatic pancreatic adenocarcinoma and umbilical cutaneous metastasis after receiving first-line chemotherapy. The diagnosis was established upon liver biopsy in July 2019, after the patient presented with a complaint of transfixing abdominal pain. The first-line treatment consisted of six cycles of modified FOLFIRINOX chemotherapy. However, in November 2019, computed tomography (CT) scan showed disease progression. Second-line treatment with gemcitabine (Gemzar®) led to a 16% decrease in target lesions. During the fourth cycle, three periumbilical indurated nodules appeared. After six cycles, skin infiltration had increased, and the patient reported his abdominal pain had intensified. Reassessment by CT scan showed an increase in both hepatic and peritoneal disease progression. Third-line treatment with FOLFIRI, started on April 15, 2020, could not control the disease, leading to greater induration and subcutaneous infiltration, which were responsible for the increased pain and ultimate death. Umbilical skin metastases are rare, and they are associated with advanced metastatic disease and a very poor prognosis. Cases reporting Sister Mary Joseph nodules are needed to better understand the conditions and mechanisms of their appearance and dissemination.
Background For patients with non-epidermal non–small-cell lung cancer (NSCLC), molecular alterations should always be investigated, especially in non-smokers, who have a very high frequency of targetable alterations (EGFR 52%; ALK 8% in particular). MET exon 14 alterations are identified in 3–4% of NSCLCs and MET gene amplification and high protein expression are associated with a poor prognosis. The French recommendations only authorize the use of capmatinib and crizotinib if the mutation concerns exon 14. However, several different types of mutation in exon 14 of MET and its flanking introns can induce a jump in exon 14, activate the MET gene and thus be sensitive to anti-MET tyrosine kinase inhibitors. Case Summary This case concerns a 76-year-old Caucasian male with a medical history including idiopathic thrombocytopenic purpura, chronic myelomonocytic leukemia (CMML), atrial fibrillation, arterial hypertension, obesity (BMI 36kg/m2), and a 5–10 pack-per-year smoking history. A left upper lobe pulmonary nodule of 12.4 mm was discovered in March 2019. The patient received adjuvant chemotherapy with carboplatin AUC 5 and vinorelbine 25.00 mg/m2. At the end of the adjuvant treatment, the patient was in complete remission for 5 months. In February 2020, the CT scan revealed a mediastinal lymph node progression. A complementary molecular analysis was realized on the initial surgical specimen. A c.3082+3A>T mutation in the MET gene was identified. This mutation confers susceptibility to anti-MET tyrosine kinase inhibitors. Treatment with crizotinib was initiated with an initial dose of 250 mg/day for 15 days and then increased to 250 mg twice a day. After 7 months of treatment with crizotinib, the disease was still stable according to RECIST 1.1. Conclusion We report here the original case of a patient presenting a lung adenocarcinoma with an intron 14 mutation and having a durable TKI response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.