For hepatitis B virus (HBV)-related chronic infection under treatment by nucleos(t)ide analogues (NUCs), HBsAg clearance is the ultimate therapeutic goal but very infrequent. We investigated how HBV envelope protein variability could lead to differential HBsAg clearance on NUCs. For 12 HBV genotype D patients receiving NUCs, six resolvers (HBsAg clearance) were compared to six matched nonresolvers (HBsAg persistence). PreS/S amino acid (aa) sequences were analysed with bioinformatics to predict HBV envelope antigenicity and aa covariance. To enrich our analyses on very rare resolvers, these were compared with other HBV genotype D strains in three characterized clinical cohorts including common chronically infected patients. The sT125M+sP127T combination was observed in four nonresolvers of six, corroborated by aa covariance analysis, associated with a lower predicted antigenicity than sT125T+sP127P. Concordant features within this HBV key functional domain, at positions 125 and 127, were reported from two of the three comparative cohorts. In our hands, a lower ELISA reactivity of HBV-vaccinated mice sera was observed against the sT125M mutant. In the S gene, 56 aa changes in minor variants were detected in non-resolvers, mainly in the major hydrophilic region, vs 28 aa changes in resolvers. Molecular features in patients showing HBsAg persistence on NUCs argue in favour of a different aa pattern in the HBV S gene compared to those showing HBsAg clearance. In nonresolvers, a decrease in HBs 'a' determinant antigenicity and more frequent mutations in the S gene suggest a role for the HBV envelope characteristics in HBsAg persistence.
BackgroundEnding the HIV pandemic must involve new tools to rapidly identify and control local outbreaks and prevent the emergence of recombinant strains with epidemiological advantages.AimThis observational study aimed to investigate in France a cluster of HIV-1 cases related to a new circulating recombinant form (CRF). The confirmation this CRF’s novelty as well as measures to control its spread are presented.MethodsPhylogenetic analyses of HIV sequences routinely generated for drug resistance genotyping before 2018 in French laboratories were employed to detect the transmission chain. The CRF involved was characterised by almost full-length viral sequencing for six cases. Cases’ clinical data were reviewed. Where possible, epidemiological information was collected with a questionnaire.ResultsThe transmission cluster comprised 49 cases, mostly diagnosed in 2016–2017 (n = 37). All were infected with a new CRF, CRF94_cpx. The molecular proximity of this CRF to X4 strains and the high median viraemia, exceeding 5.0 log10 copies/mL, at diagnosis, even in chronic infection, raise concerns of enhanced virulence. Overall, 41 cases were diagnosed in the Ile-de-France region and 45 were men who have sex with men. Among 24 cases with available information, 20 reported finding partners through a geosocial networking app. Prevention activities in the area and population affected were undertaken.ConclusionWe advocate the systematic use of routinely generated HIV molecular data by a dedicated reactive network, to improve and accelerate targeted prevention interventions. Geosocial networking apps can play a role in the spread of outbreaks, but could also deliver local targeted preventive alerts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.