We have measured the initial propagation velocity of the sperm-induced Ca(2+) wave in the egg of Xenopus laevis and have compared it with the initial propagation velocities of the inositol triphosphate (IP(3))-induced and Ca(2+)-induced Ca(2+) waves. The initial mean propagation velocity of the sperm-induced wave (13 microm/s) is very similar to that of the IP(3)-induced waves (12.3 microm/s) and two times faster than the mean Ca(2+)-induced wave velocity (6.6 microm/s). We have generated realistic simulations of the fertilization wave in the frog egg using a computational technique based on the finite difference method. Modeling refinements presented here include equations for the production, degradation, and diffusion of IP(3), a description for Ca(2+) dynamics in the endoplasmic reticulum, and a highly concentrated endoplasmic reticulum in the egg cortex. We conclude that models incorporating sperm-induced IP(3) generation fit the data best and those involving the influx of either Ca(2+) or a diffusible sperm factor fit the data poorly. This independence from Ca(2+) influx is also supported by electrophysiological data indicating that Ca(2+) influx is not needed to maintain open Cl(-) channels that generate the fertilization potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.