Summary1. The importance of individuals to the dynamics of populations may depend on reproductive status, especially for species with complex social structure. Loss of reproductive individuals in socially complex species could disproportionately affect population dynamics by destabilizing social structure and reducing population growth. Alternatively, compensatory mechanisms such as rapid replacement of breeders may result in little disruption. The impact of breeder loss on the population dynamics of social species remains poorly understood. 2. We evaluated the effect of breeder loss on social stability, recruitment and population growth of grey wolves (Canis lupus) in Denali National Park and Preserve, Alaska using a 26-year dataset of 387 radiocollared wolves. Harvest of breeding wolves is a highly contentious conservation and management issue worldwide, with unknown population-level consequences. 3. Breeder loss preceded 77% of cases (n = 53) of pack dissolution from 1986 to 2012. Packs were more likely to dissolve if a female or both breeders were lost and pack size was small. Harvest of breeders increased the probability of pack dissolution, likely because the timing of harvest coincided with the breeding season of wolves. Rates of denning and successful recruitment were uniformly high for packs that did not experience breeder loss; however, packs that lost breeders exhibited lower denning and recruitment rates. Breeder mortality and pack dissolution had no significant effects on immediate or longer term population dynamics. 4. Our results indicate the importance of breeding individuals is context dependent. The impact of breeder loss on social group persistence, reproduction and population growth may be greatest when average group sizes are small and mortality occurs during the breeding season. This study highlights the importance of reproductive individuals in maintaining group cohesion in social species, but at the population level socially complex species may be resilient to disruption and harvest through strong compensatory mechanisms.
Long-distance terrestrial migrations are imperiled globally. We determined both round-trip migration distances (straight-line measurements between migratory end points) and total annual movement (sum of the distances between successive relocations over a year) for a suite of large mammals that had potential for long-distance movements to test which species displayed the longest of both. We found that caribou likely do exhibit the longest terrestrial migrations on the planet, but, over the course of a year, gray wolves move the most. Our results were consistent with the trophic-level based hypothesis that predators would move more than their prey. Herbivores in low productivity environments moved more than herbivores in more productive habitats. We also found that larger members of the same guild moved less than smaller members, supporting the ‘gastro-centric’ hypothesis. A better understanding of migration and movements of large mammals should aid in their conservation by helping delineate conservation area boundaries and determine priority corridors for protection to preserve connectivity. The magnitude of the migrations and movements we documented should also provide guidance on the scale of conservation efforts required and assist conservation planning across agency and even national boundaries.
The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature.
Large carnivores can be found in different scenarios of cohabitation with humans. Behavioral adaptations to minimize risk from humans are expected to be exacerbated where large carnivores are most vulnerable, such as at breeding sites. Using wolves as a model species, along with data from 26 study areas across the species´ worldwide range, we performed a meta-analysis to assess the role of humans in breeding site selection by a large carnivore. Some of the patterns previously observed at the local scale become extrapolatable to the entire species range provided that important sources of variation are taken into account. Generally, wolves minimised the risk of exposure at breeding sites by avoiding human-made structures, selecting shelter from vegetation and avoiding agricultural lands. Our results suggest a scaled hierarchical habitat selection process across selection orders by which wolves compensate higher exposure risk to humans within their territories via a stronger selection at breeding 3 sites. Dissimilar patterns between continents suggest that adaptations to cope with human-associated risks are modulated by the history of coexistence and persecution. Although many large carnivores persisting in human-dominated landscapes do not require large-scale habitat preservation, habitat selection at levels below occupancy and territory should be regarded in management and conservation strategies aiming to preserve these species in such contexts. In this case, we recommend providing shelter from human interference at least in small portions of land in order to fulfill the requirements of the species to locate their breeding sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.