Hybrid self-assembled monolayers (SAMs) containing well-defined strata of different polarity enable insight into how fundamental interactions lead to higher order structure and may provide useful analogies for self-assembled multilayers, new hybrid materials, and functional biological interfaces. We report amide-containing alkanethiol SAMs with internal polar sublayers that are two amide groups thick and nonpolar overlayers comprising either dodecyl or hexadecyl chains. The assemblies have been characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, and external reflective infrared spectroscopy (FTIR-ERS). XPS demonstrates the SAMs are of monolayer thickness, chemisorbed to the gold substrate, and anisotropically oriented. Contact angle data show the methyl surface for n = 16 is highly ordered, but the surface for n = 12 is less well ordered. FTIR-ERS reveals that the alkyl chains for n = 16 are close packed, but that those for n = 12 are disordered. FTIR-ERS also shows that, although the two-amide sublayers are compositionally identical, they are well ordered and assume polyglycine-II-like conformations for n = 16, but they are poorly ordered for n = 12. Comparison of these two SAMs to each other in the context of previously reported one- and three-amide SAMs leads to two conclusions. (1) The threshold n for alkyl chain length ordering in two-amide SAMs is 12 ≤ n ≤ 16. Thus, in SAMs with internal amide sublayers both one and two amide groups thick, the threshold number of methylenes required to form ordered alkyl regions is significantly increased compared to alkanethiol SAMs, demonstrating destructive interference of the amide region with the hydrocarbon ordering process. (2) In two-amide SAMs the formation of a well-ordered amide region depends on the ordering of an overlying hydrocarbon region. This behavior differs with that previously demonstrated for one- and three-amide SAMs, in which the amide groups assume characteristic conformations regardless of hydrocarbon region thickness and order. For two-amide SAMs, the apparent dependence of amide ordering on complementary ordering in the alkyl region provides evidence of an energetic interplay between the two sublayers, manifested as a “reverse ordering” effect. The previously unobserved elastic−elastic character of the buried interface in two-amide SAMs is contrasted with the rigid−elastic interface found in the one-amide SAMs.
Bruton's tyrosine kinase (Btk) is a crucial regulator of B cell signaling and is a therapeutic target for lymphoma and autoimmune disease. BTK-deficient patients suffer from humoral immunodeficiency, as their B cells fail to progress beyond the bone marrow. However, the role of Btk in fully developed, mature peripheral B cells is not well understood. Analysis using BTK inhibitors is complicated by suboptimal inhibition, off-target effects, or failure to eliminate BTK's adaptor function. Therefore a mouse model was developed and used to excise after B cell populations were established. Mice lacking from birth are known to have reduced follicular (FO) compartments, with expanded transitional populations, suggesting a block in development. In adult mice, excision did not reduce FO B cells, which persisted for weeks. Autoimmune-prone B1 cells also survived conditional excision, contrasting their near absence in global -deficient mice. Therefore, Btk supports BCR signaling during selection into the FO and B1 compartments, but is not needed to maintain these cell populations. B1-related natural IgM levels remained normal, contrasting global deficiency, but B cell proliferation and T-independent type II immunization responses were blunted. Thus, B cells have nuanced signaling responses that are differentially regulated by Btk for development, survival, and function. These findings raise the possibility that Btk may also be expendable for survival of mature human B cells, therefore requiring prolonged dosing to be effective, and that success of BTK inhibitors may depend in part on off-target effects.
Objective Bruton’s Tyrosine Kinase (BTK) is a B cell signaling protein that also contributes to innate immunity. BTK-inhibitors prevent autoimmune arthritis, but have off-target effects, and the mechanisms of protection remain unknown. These studies used genetic deletion to investigate the role of BTK in adaptive and innate immune responses that drive inflammatory arthritis. Methods Btk-deficient K/BxN mice were generated to study the role of BTK in a spontaneous model that requires both adaptive and innate immunity. The K/BxN serum transfer model was used to bypass the adaptive system and elucidate the role of BTK in innate immune contributions to arthritis. Results Btk-deficiency conferred disease protection to K/BxN mice, confirming BTK-inhibitor outcomes. B lymphocytes were profoundly reduced, more than in other Btk-deficient models. Subset analysis revealed loss at all developmental stages. Germinal center B cells were also decreased, with downstream effects on T follicular helper numbers, and greatly reduced autoantibodies. In contrast, total IgG was only mildly decreased. Strikingly, and in contrast to small molecule inhibitors, Btk-deficiency had no effect on the serum transfer model of arthritis. Conclusions BTK contributes to autoimmune arthritis primarily via its role in B cell signaling, not innate immune components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.