Background: The Guardian REAL-Time is a continuous glucose-monitoring system (CGMS) recently developed to provide instantaneous interstitial glucose concentrations; the system does not require a monitor being fixed to the animal.Hypothesis: The CGMS provides accurate and reproducible real-time readings of glucose concentration in cats. Animals: Thirty-two diabetic cats, 2 cats with suspected insulinoma, and 5 healthy cats. Methods: Prospective, observational study. CGMS accuracy was compared with a reference glucose meter at normal, high, and low blood glucose concentrations using error grid analysis. Reading variability of 2 simultaneously used CGMS was determined in diabetic cats by calculating correlation and percentage of concordance of paired data at different glycemic ranges. The time interval between increasing glycemia and a rise in interstitial fluid glucose measured by the CGMS was assessed in healthy cats receiving glucose IV; the time point of maximal increase in interstitial glucose concentrations was calculated.Results: The CGMS was 100, 96.1, and 91.0% accurate at normal, high, and low blood glucose concentrations. Measurements deviated from reference by À12.7 AE 70.5 mg/dL at normal, À12.1 AE 141.5 mg/dL at high, and À1.9 AE 40.9 mg/dL at low glucose concentrations. Overall, paired CGMS readings correlated significantly (r 5 0.95, P o .0001) and concordance was 95.7%. The median delay after IV administration of glucose to an increase in interstitial glucose was 11.4 minutes (range: 8.8-19.7 minutes).Conclusions and Clinical Importance: Although some readings substantially deviated from reference values, the CGMS yields reproducible results, is clinically accurate in cats with hyperglycemia and euglycemia, and is slightly less accurate if blood glucose concentrations are low. Rapidly increasing interstitial glucose after a glycemic rise suggests that the CGMS is suitable for real-time measurement under clinical conditions.
Hereditary hair length variability in mice and dogs is caused by mutations within the fibroblast growth factor 5 (FGF5) gene. The aim of this study was to evaluate the feline FGF5 orthologue as a functional candidate gene for the long hair phenotype in cats, which is recessive to short hair. We amplified the feline FGF5 cDNA and characterised two alternatively spliced transcripts by RT-PCR. Comparative cDNA and genomic DNA sequencing of long- and short-haired cats revealed four non-synonymous polymorphisms in the FGF5 coding sequence. A missense mutation (AM412646:c.194C>A) was found in the homozygous state in 25 long-haired Somali, Persian, Maine Coon, Ragdoll and crossbred cats. Fifty-five short-haired cats had zero or one copy of this allele. Additionally, we found perfect co-segregation of the c.194C>A mutation within two independent pedigrees segregating for hair length. A second FGF5 exon 1 missense mutation (AM412646:c.182T>A) was found exclusively in long-haired Norwegian Forest cats. The c.182T>A mutation probably represents a second FGF5 mutation responsible for long hair in cats. In addition to the c.194C>A mutation, a frameshift mutation (AM412646:c.474delT) was found with a high frequency in the long-haired Maine Coon breed. Finally, a missense mutation (AM412646:c.475A>C) was also associated with the long-haired phenotype in some breeds. However, as one short-haired cat was homozygous for this polymorphism, it is unlikely that it has a functional role in the determination of hair length.
The goal of this study was to analyze the mode of inheritance of an overweight body condition in an experimental cat population. The cat population consisted of 95 cats of which 81 cats could be clearly classified into lean or overweight using the body condition scoring system according to Laflamme. The lean or overweight classification was then used for segregation analyses. Complex segregation analyses were employed to test for the significance of one environmental and 4 genetic models (general, mixed inheritance, major gene, and polygene). The general genetic model fit the data significantly better than the environmental model (P ≤ 0.0013). Among all other models employed, the major gene model explained the segregation of the overweight phenotype best. This is the first study in which a genetic component could be shown to be responsible for the development of overweight in cats.
In the present investigation, data on the energy intakes and energy needs, as well as protein and fat accretion, of queens during pregnancy, during lactation and after lactation are given. Eleven adult cats were used as experimental animals. Data were collected during the fourth and seventh week of pregnancy, the second and sixth week of lactation and the second and sixth week after lactation. The cats were fed dry kitten food. During gestation and after lactation, all measurements were performed with respiration chambers. During lactation, balance trials without respiration chambers were performed. Body weight was measured and nitrogen, carbon and energy balances were calculated. From these, protein and fat accretion, as well as the metabolisable energy intake, was calculated. The weight gain during gestation was linearly independent of the number of kittens. During lactation, all cats lost weight; nevertheless, all cats except one were heavier 2 weeks after lactation than at mating. The energy intake of the cats during gestation was 1.8 times the maintenance requirement in the fourth week and two times maintenance requirement in the seventh week, and these energy intakes differed greatly among individuals. The energy intake of the cats during lactation was clearly higher than that recommended by National Research Council (NRC)(1), whereas the recommended protein intake in the second week of lactation was met. As the calculated protein balance was negative, the NRC recommendation for protein intake seems to be too low. In comparison to previous data, the cats showed a higher energy intake during lactation (median 502kJ/kgBW/d, second week lactation), and the weight loss was much lower. Further investigations on pregnant and lactating cats are necessary to complete the database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.