We present the first fluorescent water‐soluble conjugated calixarene scaffolds that are capable of NO gas detection. Two different scaffolds, one based on a 5,5′‐bicalixarene structure and its isomer bearing two distantly conjugated calixarene moieties, were synthesized. While the fluorescence of both isomers is quenched upon either passing of NO gas or generating it in situ from diethylamine NONOate, the bicalixarene‐based scaffold showed a significantly stronger response. We also present an example of a dye encapsulation strategy to achieve the detection of NO at longer wavelengths than in the parent calixarene host. Finally, a conjugated polymer bearing a 5,5′‐bicalixarene scaffold has also been prepared and demonstrated enhanced sensitivity compared to the monomer due to the molecular wire effect.
A new method of CuCN-mediated one-pot cyclization of 4-(2-bromophenyl)-2-butenoates leading to efficient synthesis of substituted naphthalene amino esters including phenanthrene aromatic structural units is described. Deuterium labeling studies establish that this one-pot cascade cyclization proceeds through isomerization of olefin, intramolecular C-C bond cyclization, and aromatization as the key intermediates, all occurring in a single step.
The aldol reaction is among the most powerful and strategically important carbon–carbon bond–forming transformations in organic chemistry. The importance of the aldol reaction in constructing chiral building blocks for complex small-molecule synthesis has spurred continuous efforts toward the development of direct catalytic variants. The realization of a general catalytic aldol reaction with control over both the relative and absolute configurations of the newly formed stereogenic centers has been a longstanding goal in the field. Here, we report a decarboxylative aldol reaction that provides access to all four possible stereoisomers of the aldol product in one step from identical reactants. The mild reaction can be carried out on a large scale in an open flask, and generates CO
2
as the only by-product. The method tolerates a broad substrate scope and generates chiral β-hydroxy thioester products with substantial downstream utility.
We present the first fluorescent water‐soluble conjugated calixarene scaffolds that are capable of NO gas detection. Two different scaffolds, one based on a 5,5′‐bicalixarene structure and its isomer bearing two distantly conjugated calixarene moieties, were synthesized. While the fluorescence of both isomers is quenched upon either passing of NO gas or generating it in situ from diethylamine NONOate, the bicalixarene‐based scaffold showed a significantly stronger response. We also present an example of a dye encapsulation strategy to achieve the detection of NO at longer wavelengths than in the parent calixarene host. Finally, a conjugated polymer bearing a 5,5′‐bicalixarene scaffold has also been prepared and demonstrated enhanced sensitivity compared to the monomer due to the molecular wire effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.