Sleep apnea is a common comorbidity of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Previous studies have shown an association between elevated oxidative stress and inflammation with severe sleep apnea. Elevated oxidative stress and inflammation are also hallmarks of neurodegenerative diseases. We show increased oxidative stress and inflammation in a manner consistent with early stages of neurodegenerative disease in an animal model of mild sleep apnea. Male rats were exposed to 7 days chronic intermittent hypoxia (CIH) for 8 h/day during the light period. Following CIH, plasma was collected and tested for circulating oxidative stress and inflammatory markers associated with proinflammatory M1 or anti‐inflammatory M2 profiles. Tissue punches from brain regions associated with different stages of neurodegenerative diseases (early stage: substantia nigra and entorhinal cortex; intermediate: hippocampus; late stage: rostral ventrolateral medulla and solitary tract nucleus) were also assayed for inflammatory markers. A subset of the samples was examined for 8‐hydroxydeoxyguanosine (8‐OHdG) expression, a marker of oxidative stress‐induced DNA damage. Our results showed increased circulating oxidative stress and inflammation. Furthermore, brain regions associated with early‐stage (but not late‐stage) AD and PD expressed oxidative stress and inflammatory profiles consistent with reported observations in preclinical neurodegenerative disease populations. These results suggest mild CIH induces key features that are characteristic of early‐stage neurodegenerative diseases and may be an effective model to investigate mechanisms contributing to oxidative stress and inflammation in those brain regions.
Oxidative stress has been implicated in a number of neurodegenerative diseases spanning various fields of research. Reactive oxygen species can be beneficial or harmful, depending on their concentration. High levels of reactive oxygen species can lead to oxidative stress, which is an imbalance between free radicals and antioxidants. Increased oxidative stress can result in cell loss. Interestingly, sex differences have been observed in oxidative stress generation, which may underlie sex differences observed in neurodegenerative disorders. An enhanced knowledge of the role of sex hormones on oxidative stress signaling and cell loss can yield valuable information, leading to sex-based mechanistic approaches to neurodegeneration.
Sleep apnea is associated with testosterone dysregulation as well as increased risk of developing neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). A rodent model of the hypoxic events of sleep apnea, chronic intermittent hypoxia (CIH), has been previously documented to impair cognitive function and elevate oxidative stress in male rats, while simultaneously decreasing testosterone. Therefore, androgens may modulate neuronal function under CIH. To investigate the role of androgens during CIH, male rats were assigned to one of four hormone groups: 1) gonadally intact, 2) gonadectomized (GDX), 3) GDX + testosterone (T) supplemented, or 4) GDX + dihydrotestosterone (DHT) supplemented. Each group was exposed to either normal room air or CIH exposure for one week, followed by memory and motor task assessments. Brain regions associated with AD and PD (entorhinal cortex, dorsal hippocampus, and substantia nigra) were examined for oxidative stress and inflammatory markers, key characteristics of AD and PD. Gonadally intact rats exhibited elevated oxidative stress due to CIH, but no significant memory and motor impairments. GDX increased memory impairments, regardless of CIH exposure. T preserved memory function and prevented detrimental CIH-induced changes. In contrast, DHT was not protective, as evidenced by exacerbated oxidative stress under CIH. Further, CIH induced significant spatial memory impairment in rats administered DHT. These results indicate androgens can have both neuroprotective and detrimental effects under CIH, which may have clinical relevance for men with untreated sleep apnea.
Postoperative cognitive dysfunction (POCD) has been reported with widely varying frequency but appears to be strongly associated with aging. Outside of the surgical arena, chronic and acute cerebral hypoxia may exist as a result of respiratory, cardiovascular, or anemic conditions. Hypoxia has been extensively implicated in cognitive impairment. Furthermore, disease states associated with hypoxia both accompany and progress with aging. Perioperative cerebral hypoxia is likely underdiagnosed, and its contribution to POCD is underappreciated. Herein, we discuss the various disease processes and forms in which hypoxia may contribute to POCD. Furthermore, we outline hypoxia-related mechanisms, such as hypoxia-inducible factor activation, cerebral ischemia, cerebrovascular reserve, excitotoxicity, and neuroinflammation, which may contribute to cognitive impairment and how these mechanisms interact with aging. Finally, we discuss opportunities to prevent and manage POCD related to hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.