"Structure determines properties", this assertion is a central paradigm in materials research as well as in molecular biology. It is a prime reason for the popularity of the notion of crystal engineering, whose goal it is to develop novel materials with predefined and tuned properties.[1] Such engineering necessarily proceeds in two steps: 1) establishing empirical or theoretical relationships between solid-state structure and desired properties, 2) tailoring of the structure by a synthesis process.[2] The property of main interest in spincrossover compounds is the thermal evolution of magnetic behavior. Herein we report on a serendipitous observation derived from magnetic and structural studies on six different alcohol solvates of iron(ii) tris(2-picolylamine) dichloride (1), in which the size of the solvating molecules ranges from methanol to tert-butyl alcohol. The six crystal structures are either isostructural or polytypic. In spite of evident structural similarity, the spin-transition curves are very different.
Sedimentary facies in the distal parts of deep-marine lobes can diverge significantly from those predicted by classical turbidite models, and sedimentological processes in these environments are poorly understood. This gap may be bridged using outcrop studies and theoretical models. In the Skoorsteenberg Fm., a downstream transition from thickly-bedded turbidite sandstones to argillaceous, internally layered hybrid beds is observed. The hybrid beds have a characteristic stratigraphic and spatial distribution, being associated with bed successions which generally coarsen- and thicken-upwards reflecting deposition on the fringes of lobes in a dominantly progradational system. Using a detailed characterisation of bed types, including grain size, grain fabric and mineralogical analyses, a process-model for flow evolution is developed. This is explored using a numerical suspension capacity model for radially spreading and decelerating turbidity currents. The new model shows how decelerating sediment suspensions can reach a critical suspension capacity threshold beyond which grains are not supported by fluid turbulence. Sand and silt particles, settling together with flocculated clay, may form low yield-strength cohesive flows; development of these higher concentration lower boundary layer flows inhibits transfer of turbulent kinetic energy into the upper parts of the flow ultimately resulting in catastrophic loss of turbulence and collapse of the upper part of the flow. Advection distances of the now transitional to laminar flow are relatively long (several km) suggesting relatively slow dewatering (several hours) of the low yield strength flows. The catastrophic loss of turbulence accounts for the presence of such beds in other fine-grained systems without invoking external controls or large-scale flow partitioning, and also explains the abrupt pinch-out of all divisions of these sandstones. Estimation of the point of flow transformation is a useful tool in the prediction of heterogeneity distribution in subsurface systems.
Crystal structures, magnetic and thermodynamic properties of the spin-crossover compound tris(2-picolylamine)iron(II) dichloride (with 2-propanol solvent molecules) have been measured in the temperature range from 15 to 293 K. X-ray diffraction, SQUID, and calorimetric experiments all showed two first-order phase transitions with hysteresis loops, a narrow one at T(1) approximately 196 K and a broad, triangular one covering the range 153
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.