Four G adhesins, cloned from uropathogenic Escherichia coli strains, were examined for binding to glycolipids and various eukaryotic cells. PapGAD110 and PapGIA2 showed virtually identical binding patterns to Gal alpha 1‐4Gal‐containing glycolipids, while PapGJ96 differed slightly and PrsGJ96 markedly with respect to the effect of neighbouring groups on the binding. Their hemagglutination patterns confirmed the existence of three receptor‐binding specificities. While the PapG adhesins bound to uroepithelial cells from man (T24) but not to those from the dog (MDCK II), the reverse was true of PrsG. These binding patterns were largely explained by the absence or presence of appropriate glycolipid isoreceptors, although the inability of the PapG adhesins to bind MDCK II cells was attributed to an inappropriate presentation of their receptor epitopes. The high prevalence of PrsG‐like specificities observed among wild‐type dog uropathogenic E. coli isolates, together with the determined isoreceptor composition of human and dog kidney target tissues, suggest variation in receptor specificity as a mechanism for shifting host specificity, and that this variation has evolved in response to the topography of the host cellular receptors. The receptor‐binding half proposed for the predicted amino acid sequences of the four G adhesins and the corresponding adhesin of one of the dog E. coli isolates varied considerably among the three receptor‐binding groups of adhesins, but only little within each group.
Nonobstructive acute pyelonephritis in humans is most often caused by P-fimbriated Escherichia cofl. P-fimbriae are heteropolymeric fibers carrying a Gal(al-4)Gal-specific PapG adhesin at its distal end. The pyelonephritic strain DS17 expresses P-fimbriae from a single gene cluster. A mutant strain, DS17-8, which expresses P-fimbriae lacking the PapG adhesin, was constructed by allelic replacement introducing a 1-bp deletion early in the papG gene. In cynomolgus monkeys, DS17 and DS17-8 were equally able to cause bladder infection, whereas only the wild-type strain DS17 could cause pyelonephritis as monitored by bacteriological, functional, and histopathological criteria. Since DS17, but not DS17-8, adheres to renal tissue, these data underscore the critical role of microbial adherence to host tissues in infectious disease and strongly suggest that the PapG tip adhesin of P-fimbriae is essential in the pathogenesis of human kidney infection.
Escherichia coli strains bind to Gal alpha 1-4Gal-containing glycolipids via P pili-associated G-adhesins. Three functional classes of adhesins with different binding specificities are encoded by conserved G-alleles. We suggest that the Class I papG-allele of strain J96 is a novel acquisition possibly introduced via horizontal gene transfer into one of the two P pili gene clusters carried by this strain. Closely related strains in the ECOR collection of natural E. coli isolates carry either a Class II or a Class III G-adhesin. Data indicate that genetic exchanges involving either entire pap or prs gene clusters or individual pap/prs genes have occurred. We propose that the retention and spread of pap/prs DNA among E. coli is the result of selection pressure exerted by mammalian intestinal isoreceptors.
Uropathogenic Escherichia coli frequently express P-pilus adhesins that recognize Gal alpha (1-4)Gal-containing glycoconjugates. The P-pilus adhesin of the E. coli isolate J96 is encoded by the pap gene cluster and has been shown to agglutinate P1-erythrocytes. We now describe a novel gene cluster from J96, prs, which is responsible for the agglutination of sheep erythrocytes. The structurally related gene clusters both expressed pili exhibiting the F13 antigen. Analysis of mutants of cloned prs sequences, together with trans-complementation of pap and prs genes, identified the sheep-specific adhesin as the 37-kD PrsG protein. The prsG gene occupies the equivalent position in prs as occupied by papG, which specifies the Gal alpha (1-4)Gal-specific adhesin of pap. PrsG was shown to be structurally distinct from PapG since PapG-specific antiserum did not cross-react with PrsG. Using a solid phase glycolipid receptor binding assay, PrsG was found to specify preferential binding to the Forssman antigen, a major constituent of sheep erythrocyte membranes. The binding epitope was identified as the GaINAc alpha (1-3)GaINAc moiety. This is the first direct evidence that serologically identical pili may present antigenically distinct adhesins, each capable of binding to a specific receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.