The MRE11/RAD50/NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks (DSBs). Hypomorphic mutations in NBN (previously known as NBS1) and MRE11A give rise to the autosomal-recessive diseases Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively. To date, no disease due to RAD50 deficiency has been described. Here, we report on a patient previously diagnosed as probably having NBS, with microcephaly, mental retardation, 'bird-like' face, and short stature. At variance with this diagnosis, she never had severe infections, had normal immunoglobulin levels, and did not develop lymphoid malignancy up to age 23 years. We found that she is compound heterozygous for mutations in the RAD50 gene that give rise to low levels of unstable RAD50 protein. Cells from the patient were characterized by chromosomal instability; radiosensitivity; failure to form DNA damage-induced MRN foci; and impaired radiation-induced activation of and downstream signaling through the ATM protein, which is defective in the human genetic disorder ataxia-telangiectasia. These cells were also impaired in G1/S cell-cycle-checkpoint activation and displayed radioresistant DNA synthesis and G2-phase accumulation. The defective cellular phenotype was rescued by wild-type RAD50. In conclusion, we have identified and characterized a patient with a RAD50 deficiency that results in a clinical phenotype that can be classified as an NBS-like disorder (NBSLD).
Mutations in the NBS1 gene have been identified as disease-causing mutations in patients with Nijmegen Breakage Syndrome (NBS), but their clinical impact on breast cancer susceptibility has remained uncertain. We determined the frequency of 2 NBS mutations, 657del5 and R215W, in two large series of breast cancer cases and controls from Northern Germany and from the Republic of Belarus. The 5-bp-deletion 657del5 was identified in 15/1,588 cases (0.9%) from Belarus and in 1/1,076 cases (0.1%) from Germany but in only 1/1,014 population controls from Belarus and 0/1017 German controls (p < 0.01). The missense substitution R215W was observed in 9/1,588 Byelorussian and 9/1,076 German patients (0.6% and 0.8%, respectively) but was also present in 5/1,014 Byelorussian and 2/1,017 German control individuals (adjusted OR 5 1.9, 95%CI 0.8-4.6, p 5 0.18). Studies of lymphoblastoid cell lines revealed that NBS1/p95 protein levels were reduced to 70% in cells from a heterozygous breast cancer patient carrying R215W and to 15% in cells from a NBS patient compound heterozygous for 657del5/R215W suggesting that the R215W substitution may be associated with protein instability. Levels of radiation-induced phosphorylation of Nbs1/p95(Ser343) were reduced to 60% and 35% of wildtype, respectively. Neither age at diagnosis nor family history of breast cancer differed significantly between carriers and noncarriers of NBS mutations. The combined data are in line with an about 3-fold increase in breast cancer risk for female NBS heterozygotes (OR 3.1; 95%CI 1.4-6.6) and indicate that the 657del5 deletion and perhaps the R215W substitution contribute to inherited breast cancer susceptibility in Central and Eastern Europe. ' 2007 Wiley-Liss, Inc.
Ataxia telangiectasia mutated (ATM) has multiple functions in homologous recombination (HR) and nonhomologous end joining (NHEJ), which lead to conflicting data regarding its DNA double-strand break-repair (DSBR) functions in previous studies. To explore the effect of clinically relevant ATM mutations, we characterized DSBR between mutated EGFP genes and ATM kinase signaling in 9 lymphoblastoid cell lines (LCLs) derived from patients with ataxia telangiectasia (AT) with defined vs. 3 control LCLs without ATM mutations. Our study revealed that the DSBR phenotype in AT cells is not uniform but appears to depend on the mutation, causing up to 32-fold increased or up to 3-fold decreased activities in particular pathways. Comparison with a further 10 LCLs mutated in downstream factors (BRCA1, BRCA2, Nibrin, Rad50, and Chk2) showed that the most diametrically opposed DSBR patterns in AT cells phenocopied NBN/RAD50 or BRCA1 mutations. Notably, reexpressing wild-type ATM reversed these defects by 2.3- to 3.5-fold. Our data suggest that ATM stimulates repair proteins such as Nibrin, which execute HR, single-strand annealing (SSA), and NHEJ. Concomitantly, ATM minimizes error-prone repair (SSA and NHEJ) through activation of surveillance factors such as BRCA1. Since the outcome of the individual defect can be diametrically opposed, distinguishing repair patterns in patients with ATM mutations may also be relevant regarding therapeutic responses.
The mechanisms for induction of eosinophil apoptosis remain uncertain. The role of oxidative stress has not been investigated. The present study was undertaken to determine the role of reactive oxygen species (ROS) and selective antioxidants in eosinophil apoptosis. Eosinophils were cultured with sodium arsenite (SA) known to induce intracellular oxidative metabolites. There was a significant increase in the rate of eosinophil apoptosis with low concentrations of arsenite, whereas high concentrations showed rates of apoptosis similar to control medium. Investigating the role of intracellular oxidants by flow cytometry, we found that while inducing apoptosis, SA more than anti-Fas resulted in a significant dose-dependent production of intracellular H2O2. In contrast, the extracellular release of superoxide decreased after stimulation with SA or anti-Fas as assessed by lucigenin-dependent chemiluminescence. Coincubation experiments demonstrated that arsenite-induced apoptosis can be nearly completely prevented by selective antioxidants such as glutathione (GSH) and N-acetyl-cysteine (NAC), but not dimethyl sulfoxide (DMSO) or taurine (TAUR). Moreover, GSH and NAC significantly reduced eosinophil apoptosis mediated by a monoclonal antibody directed to Fas antigen. Next it was shown that GSH and NAC, but not DMSO or TAUR, were able to significantly delay spontaneous apoptosis in unstimulated eosinophils. Taken together, these data point to an important role of oxygen-dependent mechanisms in the regulation of eosinophil survival and apoptosis. We propose that eosinophil apoptosis may be related to the ability of the cell to maintain an appropriate oxidant-antioxidant balance.
Mild clinical phenotypes of ataxia-telangiectasia (variant AT) are associated with biallelic ATM variants resulting in residual function of the ATM kinase. At least one regulatory, missense, or leaky splice site mutation resulting in expression of ATM with low level kinase activity was identified in subjects with variant AT. Studies on the pathogenicity of the germline splicing ATM variant c.1066-6T>G have provided conflicting results. Using whole-exome sequencing, we identified two splice site ATM variants, c.1066-6T>G; [p.?], and c.2250G>A, [p.Ile709_Lys750del], in a compound heterozygous state in a 27-year-old woman who had been diagnosed as having congenital ocular motor apraxia type Cogan in her childhood. Reappraisal of her clinical phenotype revealed consistency with variant AT. Functional analyses showed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.