Nanoparticles are under investigation as diagnostic and therapeutic agents for joint diseases, such as osteoarthritis. However, there is incomplete understanding of nanoparticle diffusion in synovial fluid, the fluid inside the joint, which consists of a mixture of the polyelectrolyte hyaluronic acid, proteins, and other components. Here, we show that rotational and translational diffusion of polymer-coated nanoparticles in quiescent synovial fluid and in hyaluronic acid solutions is well described by the Stokes-Einstein relationship, albeit with an effective medium viscosity that is much smaller than the macroscopic low shear viscosity of the fluid. This effective medium viscosity is well described by an equation for the viscosity of dilute polymer chains, where the additional viscous dissipation arises because of the presence of the polymer segments. These results shed light on the diffusive behavior of polymer-coated inorganic nanoparticles in complex and crowded biological environments, such as in the joint.
Purpose: Aging is a known risk factor for osteoarthritis (OA). Several transgenic rodent models have been used to investigate the effects of accelerated or delayed aging in articular joints. However, age-effects on the progression of post-traumatic OA are less frequently evaluated. The objective of this study is to evaluate how animal age affects the severity of intra-articular inflammation and joint damage in the rat medial collateral ligament plus medial meniscus transection (MCLT+MMT) model of knee OA.Methods: Forty-eight, male Lewis rats were aged to 3, 6, or 9 months old. At each age, eight rats received either an MCLT+MMT surgery or a skin-incision. At 2 months post-surgery, intraarticular evidence of CTXII, IL1β, IL6, TNFα, and IFNγ was evaluated using a multiplex magnetic capture technique, and histological evidence of OA was assessed via a quantitative histological scoring technique.Results: Elevated levels of CTXII and IL6 were found in MCLT+MMT knees relative to skinincision and contralateral controls; however, animal age did not affect the severity of joint inflammation. Conversely, histological investigation of cartilage damage showed larger cartilage lesion areas, greater width of affected cartilage, and more evidence of hypertrophic cartilage damage in MCLT+MMT knees with age.
The treatment of chronic inflammation with systemically administered anti-inflammatory treatments is associated with moderate-to-severe side effects, and the efficacy of locally administered drugs is short-lived. Here we show that inflammation can be locally suppressed by a fusion protein of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO) and galectin-3 (Gal3). Gal3 anchors IDO to tissue, limiting the diffusion of IDO-Gal3 away from the injection site. In rodent models of endotoxin-induced inflammation, psoriasis, periodontal disease and osteoarthritis, the fusion protein remained in the inflamed tissues and joints for about 1 week after injection, and the amelioration of local inflammation, disease progression and inflammatory pain in the animals were concomitant with homoeostatic preservation of the tissues and with the absence of global immune suppression. IDO-Gal3 may serve as an immunomodulatory enzyme for the control of focal inflammation in other inflammatory conditions.
Objective: Tissues have complex structures, comprised of solid and fluid phases. Improved understanding of interactions between joint fluid and extracellular matrix (ECM) is required in models of cartilage mechanics. X-ray photon correlation spectroscopy (XPCS) directly measures nanometer-scale dynamics, and thus can provide insight into biofluid-biosolid interactions in cartilage. This study applies XPCS to evaluate dynamic interactions between intact cartilage and biofluids.Design: Cartilage biopsies were collected from bovine femoral condyles. During XPCS measurements, cartilage samples were exposed to different fluids: deionized water, PBS, synovial fluid, or sonicated synovial fluid. ECM-biofluid interactions were also assessed at different length scales and different depths from the cartilage surface.Results: Using SA-XPCS, cartilage ECM mobility was detected at length scales from 50 to 207 nm. As length scale decreased, time scale for autocorrelation decay decreased, suggesting smaller ECM components are more mobile. ECM dynamics were slowed by dehydrating the sample, demonstrating XPCS assesses matrix mobility in hydrated environments. At all length scales, the matrix was more mobile in deionized water and slowest in synovial fluid. Using the 207 nm length scale assessment, ECM dynamics in synovial fluid were fastest at the cartilage surface and progressively slowed as depth into the sample increased, demonstrating XPCS can assess spatial distribution of ECM dynamics. Finally, ECM mobility increased for sonicated synovial fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.