There is evidence indicating that curcumin has multiple biological activities, including anti-inflammatory properties. In vitro and in vivo studies demonstrate that curcumin may attenuate inflammation and the connective tissue destruction associated with periodontal disease. Most of these studies use systemic administration, and considering the site-specific nature of periodontal disease and also the poor pharmacodynamic properties of curcumin, we conducted this proof of principle study to assess the biological effect of the local administration of curcumin in a nanoparticle vehicle on experimental periodontal disease. We used 16 rats divided into two groups of 8 animals according to the induction of experimental periodontal disease by bilateral injections of LPS or of the vehicle control directly into the gingival tissues 3×/week for 4 weeks. The same volume of curcumin-loaded nanoparticles or of nanoparticle vehicle was injected into the same sites 2×/week. µCT analysis showed that local administration of curcumin resulted in a complete inhibition of inflammatory bone resorption and in a significant decrease of both osteoclast counts and of the inflammatory infiltrate; as well as a marked attenuation of p38 MAPK and NF-kB activation. We conclude that local administration of curcumin-loaded nanoparticles effectively inhibited inflammation and bone resorption associated with experimental periodontal disease.
BackgroundPiezosurgery is an osteotomy system used in medical and dental surgery. Many studies have proven clinical advantages of piezosurgery in terms of quality of cut, maneuverability, ease of use, and safety. However, few investigations have tested its superiority over the traditional osteotomy systems in terms of dynamics of bone healing. Therefore, the aim of this study was to evaluate the dynamics of bone healing after osteotomies with piezosurgery and to compare them with those associated to traditional bone drilling.MethodsOne hundred and ten rats were divided into two groups with 55 animals each. The animals were anesthetized and the tibiae were surgically exposed to create defects 2 mm in diameter by using piezosurgery (Piezo group) and conventional drilling (Drill group). Animals were sacrificed at 3, 7, 14, 30 and 60 days post-surgery. Bone samples were collected and processed for histological, histomorphometrical, immunohistochemical, and molecular analysis. The histological analysis was performed at all time points (n = 8) whereas the histomorphometrical analysis was performed at 7, 14, 30 and 60 days post-surgery (n = 8). The immunolabeling was performed to detect Vascular Endothelial Growth Factor (VEGF), Caspase-3 (CAS-3), Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor kappa-B Ligand (RANKL), and Osteocalcin (OC) at 3, 7, and 14 days (n = 3). For the molecular analysis, animals were sacrificed at 3, 7 and 14 days, total RNA was collected, and quantification of the expression of 21 genes related to BMP signaling, Wnt signaling, inflammation, osteogenenic and apoptotic pathways was performed by qRT-PCR (n = 5).ResultsHistologically and histomorphometrically, bone healing was similar in both groups with the exception of a slightly higher amount of newly formed bone observed at 30 days after piezosurgery (p < 0.05). Immunohistochemical and qRT-PCR analyses didn’t detect significant differences in expression of all the proteins and most of the genes tested.ConclusionsBased on the results of our study we conclude that in a rat tibial bone defect model the bone healing dynamics after piezosurgery are comparable to those observed with conventional drilling.
Cancer cachexia represents a debilitating syndrome that diminishes quality of life and augments the toxicities of conventional treatments. Cancer cachexia is particularly debilitating in patients with pancreatic cancer (PC). Mechanisms responsible for cancer cachexia are under investigation and are largely derived from observations in syngeneic murine models of cancer which are limited in PC. We evaluate the effect of human PC cells on both muscle wasting and the systemic inflammatory milieu potentially contributing to PC-associated cachexia. Specifically, human PC xenografts were generated by implantation of pancreatic cancer cells, L3.6pl and PANC-1, either in the flank or orthotopically within the pancreas. Mice bearing orthotopic xenografts demonstrated significant muscle wasting and atrophy-associated gene expression changes compared to controls. Further, despite the absence of adaptive immunity, splenic tissue from orthotopically engrafted mice demonstrated elevations in several pro-inflammatory cytokines associated with cancer cachexia, including TNFα, IL1β, IL6 and KC (murine IL8 homologue), when compared to controls. Therefore, data presented here support further investigation into the complexity of cancer cachexia in PC to identify potential targets for this debilitating syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.