This cohort study assesses the association between SARS-CoV-2 vaccination and SARS-CoV-2 infections among a population of Veterans Affairs (VA) patients with cancer.
A major environmental concern associated with coal fly ash is the mobilization of trace elements that may contaminate water. To better evaluate proper use of fly ash, determine appropriate disposal methods, and monitor postdisposal conditions, it is important to understand the speciation of trace elements in fly ash and their possible environmental impact. The speciation of selenium, arsenic, and zinc was determined in five representative Class C fly ash samples from combustion of subbituminous Powder River Basin coal using synchrotron-based X-ray absorption spectroscopy to provide an improved understanding of the mechanisms of trace element association with the fly ash. Selenium in all fly ash samples occurs predominantly as Se(IV), with the exception of one sample, in which there was a minor amount of Se(0). Se(0) is likely associated with the high content of unburned coal in the sample. Arsenic exists in the fly ash as a single phase most consistent with calcium pyroarsenate. In contrast, zinc occurs as two distinct species in the silicate glass matrix of the fly ash. This work demonstrates that residual carbon in fly ash may reduce potential Se mobility in the environment by retaining it as less soluble elemental Se instead of Se(IV). Further, this work suggests that As and Zn in Class C fly ash will display substantially different release and mobilization behaviors in aquatic environments. While As release will primarily depend upon the dissolution and hydrolysis of calcium pyroarsenate, Zn release will be controlled by the dissolution of alkaline aluminosilicate glass in the ash.
Introduction of coal fly ash into aquatic systems poses a potential environmental hazard because of its heavy metal content. Here we investigate the relationship between solid phase transformations, fluid composition, and metal release and speciation during prolonged wet aging of a class C and class F coal fly ash. The class C ash causes rapid alkalinization of water that is neutralized over time by CO(2) uptake from air and calcite precipitation. The resulting aqueous metal concentrations are below regulatory limits with the exception of Cr; solubility constraints suggest this is released as chromate. Limited As release is accompanied by no change in solid-phase speciation, but up to 35% of the Zn in the ash dissolves and reprecipitates in secondary phases. Similar processes inhibit Ba and Cu release. In contrast, the class F ash causes rapid acidification of water and initially releases substantial quantities of As, Se, Cr, Cu, Zn, and Ba. Arsenic concentrations decline during aging because of adsorption to the iron oxide-rich ash; this is aided by As(III) oxidation. Precipitation processes lower Ba and Cr concentrations during aging. Se, Cu, and Zn concentrations remain elevated during wet aging and solid-phase Zn speciation is not affected by ash-water reactions. Total metal contents were poor predictors of metal release, which is predominantly controlled by metal speciation and the effects of ash-water reactions on fluid pH. While contact with atmospheric gases has little effect on class F ash, carbonation of class C ash inhibits metal release and neutralizes the alkalinity produced by the ash.
Rice was traditionally grown only during the summer (aman) monsoon in Bangladesh but more than half is now grown during the dry winter (boro) season and requires irrigation. A previous field study conducted in a small area irrigated by a single high-arsenic well has shown that the accumulation of arsenic (As) in soil from irrigating with high-As groundwater can reduce rice yield. We investigated the effect of soil As on rice yield under a range of field conditions by exchanging the top 15 cm of soil between 13 high-As and 13 low-As plots managed by 16 different farmers, and we explore the implications for mitigation. Soil As and rice yields were measured for soil replacement plots where the soil was exchanged and adjacent control plots where the soil was not exchanged. Differences in yield (ranging from +2 to −2 t/ha) were negatively correlated to the differences in soil As (ranging from −9 to +19 mg/kg) between adjacent replacement and control plots during two boro seasons. The relationship between soil As and yield suggests a boro rice yield loss over the entire country of 1.4–4.9 million tons annually, or 7–26% of the annual boro harvest, due to the accumulation of As in soil over the past 25 years.
Geomorphic attributes were collected from natural color aerial orthophotography to develop a multiscale classification for the downstream-most 220 kilometers of the Platte River in eastern Nebraska. The intent of this classification is to define discrete reaches that have geomorphic characteristics favorable to endangered interior least terns (Sternula antillarum) and threatened piping plovers (Charadrius melodus) who use riverine sandbars for nesting habitat. Annual to daily fluctuations in discharge present a challenge to characterizing emergent sandbar habitat directly from existing aerial orthophotography for the Platte River. Therefore, this classification is based on geomorphic measures that are relatively insensitive to prevailing river discharge but may be physically related to emergent sandbar locations. Such features include valley width, channel width, and sinuosity. The results provide fourcluster and seven-cluster classifications for the Lower Platte River based on naturally occurring, statistically determined clusters of features. The classification was validated using tern and plover nest data for 2006-08. Forty-nine percent of the nest locations fell within the same class type in the four-cluster classification, which represented 18 percent of the study area. This class is found primarily in the Eastern Platte River Gorge, downstream from Salt Creek and upstream from the junction of the Platte River with the Missouri River.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.