This work presents chemically stable and biodegradable hydrogel beads for the isolation of circulating tumor cells (CTCs) and circulating exosomes in liquid biopsy. The liquid biopsy hydrogel beads ( LB beads) consisting of alginate and poly(vinyl alcohol) hydrogels show both chemical stability and stimuli-degradable characteristics. Unlike single-component hydrogels, this hybrid form is not easily degraded by buffers or cell culture media while its degradable characteristic remains; thus, it is useful in bio-applications requiring multi-step processes with various reagents and lengthy incubation periods. We applied our platform to clinical samples for isolating two promising circulating biomarkers for a liquid biopsy, CTCs and exosomes, by conjugating the hydrogel surface with anti-EpCAM and anti-CD63 antibodies, respectively, thus achieving 37.4 CTCs and comparable amount of exosome recovery per 1 milliliter of blood. The results show easy device-free isolation and retrieval of CTCs and exosomes, with recovered circulating biomarkers successfully analyzed by western blot analysis and fluorescence microscopy. We believe that this simple and versatile platform enables us to isolate prominent circulating biomarkers for clinical use in cancer diagnosis.
As pancreatic cancer is the third deadliest cancer in the U.S., the ability to study genetic alterations is necessary to provide further insight into potentially targetable regions for cancer treatment. Circulating tumor cells (CTCs) represent an especially aggressive subset of cancer cells, capable of causing metastasis and progressing the disease. Here, we present the Labyrinth–DEPArray pipeline for the isolation and analysis of single CTCs. Established cell lines, patient-derived CTC cell lines and freshly isolated CTCs were recovered and sequenced to reveal single-cell copy number variations (CNVs). The resulting CNV profiles of established cell lines showed concordance with previously reported data and highlight several gains and losses of cancer-related genes such as FGFR3 and GNAS. The novel sequencing of patient-derived CTC cell lines showed gains in chromosome 8q, 10q and 17q across both CTC cell lines. The pipeline was used to process and isolate single cells from a metastatic pancreatic cancer patient revealing a gain of chromosome 1q and a loss of chromosome 5q. Overall, the Labyrinth-DEPArray pipeline offers a validated workflow combining the benefits of antigen-free CTC isolation with single cell genomic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.