International audience
For irreducible characters $\{ \chi_q^{\lambda} | \lambda \vdash n\}$ and induced sign characters $\{\epsilon_q^{\lambda} | \lambda \vdash n\}$ of the Hecke algebra $H_n(q)$, and Kazhdan-Lusztig basis elements $C'_w(q)$ with $w$ avoiding the pattern 312, we combinatorially interpret the polynomials $\chi_q^{\lambda}(q^{\frac{\ell(w)}{2}} C'_w(q))$ and $\epsilon_q^{\lambda}(q^{\frac{\ell(w)}{2}} C'_w(q))$. This gives a new algebraic interpretation of $q$-chromatic symmetric functions of Shareshian and Wachs. We conjecture similar interpretations and generating functions corresponding to other $H_n(q)$-traces.
Pour les caractères irréductibles $\{ \chi_q^{\lambda} | \lambda \vdash n\}$ et les caractères induits du signe $\{\epsilon_q^{\lambda} | \lambda \vdash n\}$ du algèbre de Hecke, et les éléments $C'_w(q)$ du base Kazhdan-Lusztig avec $w$ qui évite le motif 312, nous interprétons les polynômes $\chi_q^{\lambda}(q^{\frac{\ell(w)}{2}} C'_w(q))$ et $\epsilon_q^{\lambda}(q^{\frac{\ell(w)}{2}} C'_w(q))$ de manière combinatoire. Cette donne une nouvelle interprétation aux fonctions symétriques $q$-chromatiques de Shareshian et Wachs. Nous conjecturons des interprétations semblables et des fonctions génératrices qui correspondent aux autres applications centrales de $H_n(q)$.
International audience
Let $χ ^λ$ be the irreducible $S_n$-character corresponding to the partition $λ$ of $n$, equivalently, the preimage of the Schur function $s_λ$ under the Frobenius characteristic map. Let $\phi ^λ$ be the function $S_n →ℂ$ which is the preimage of the monomial symmetric function $m_λ$ under the Frobenius characteristic map. The irreducible character immanant $Imm_λ {(x)} = ∑_w ∈S_n χ ^λ (w) x_1,w_1 ⋯x_n,w_n$ evaluates nonnegatively on each totally nonnegative matrix $A$. We provide a combinatorial interpretation for the value $Imm_λ (A)$ in the case that $λ$ is a hook partition. The monomial immanant $Imm_{{\phi} ^λ} (x) = ∑_w ∈S_n φ ^λ (w) x_1,w_1 ⋯x_n,w_n$ is conjectured to evaluate nonnegatively on each totally nonnegative matrix $A$. We confirm this conjecture in the case that $λ$ is a two-column partition by providing a combinatorial interpretation for the value $Imm_{{\phi} ^λ} (A)$.
Soit $χ ^λ$ le caractère irréductible de $S_n$ qui correspond à la partition λ de l'entier n, ou de manière équivalente, la préimage de la fonction de Schur $s_λ$ par l'application caractéristique de Frobenius. Soit $\phi ^λ$ la fonction $S_n →ℂ$ qui est la préimage de la fonction symétrique monomiale m_λ . La valeur du caractère irréductible immanent $Imm_λ {(x)} = ∑_w ∈S_n χ ^λ (w) x_1,w_1 ⋯x_n,w_n$ est non négative pour chaque matrice totalement non négative. Nous donnons une interprétation combinatoire de la valeur $Imm_λ (A)$ lorsque $λ$ est une partition en équerre. Stembridge a conjecturé que la valeur de l'immanent monomial $Imm_{{\phi} ^λ} (x) = ∑_w ∈S_n φ ^λ (w) x_1,w_1 ⋯x_n,w_n$ de $\phi ^λ$ est elle aussi non négative pour chaque matrice totalement non négative. Nous confirmons cette conjecture quand λ satisfait $λ _1 ≤2$, et nous donnons une interprétation combinatoire de $Imm_{{\phi} ^λ} (A)$ dans ce cas.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.