Retaining glycosyltransferase enzymes retain the stereochemistry of the donor glycosidic linkage after transfer to an acceptor molecule. The mechanism these enzymes utilize to achieve retention of the anomeric stereochemistry has been a matter of much debate. Re-analysis of previously released structural data from retaining and inverting glycosyltransferases allows competing mechanistic proposals to be evaluated. The binding of metal-nucleotide-sugars between inverting and retaining enzymes is conformationally unique and requires the donor substrate to occupy two different orientations in the two types of glycosyltransferases. The available structures of retaining glycosyltransferases lack appropriately positioned enzymatic dipolar residues to initiate or stabilize the intermediates of a dissociative mechanism. Further, available structures show that the acceptor nucleophile and anomeric carbon of the donor sugar are in close proximity. Structural features support orthogonal (front-side) attack from a position lying ≤90° from the C1-O phosphate bond for retaining enzymes. These structural conclusions are consistent with the geometric conclusions of recent kinetic and computational studies.
The human ABO(H) blood group A- and B-synthesizing glycosyltransferases GTA and GTB have been structurally characterized to high resolution in complex with their respective trisaccharide antigen products. These findings are particularly timely and relevant given the dearth of glycosyltransferase structures collected in complex with their saccharide reaction products. GTA and GTB utilize the same acceptor substrates, oligosaccharides terminating with α-l-Fucp-(1→2)-β-d-Galp-OR (where R is a glycolipid or glycoprotein), but use distinct UDP donor sugars, UDP-N-acetylgalactosamine and UDP-galactose, to generate the blood group A (α-l-Fucp-(1→2)[α-d-GalNAcp-(1→3)]-β-d-Galp-OR) and blood group B (α-l-Fucp-(1→2)[α-d-Galp-(1→3)]-β-d-Galp-OR) determinant structures, respectively. Structures of GTA and GTB in complex with their respective trisaccharide products reveal a conflict between the transferred sugar monosaccharide and the β-phosphate of the UDP donor. Mapping of the binding epitopes by saturation transfer difference NMR measurements yielded data consistent with the X-ray structural results. Taken together these data suggest a mechanism of product release where monosaccharide transfer to the H-antigen acceptor induces active site disorder and ejection of the UDP leaving group prior to trisaccharide egress.
A common feature in the structures of GT-A-fold-type glycosyltransferases is a mobile polypeptide loop that has been observed to participate in substrate recognition and enclose the active site upon substrate binding. This is the case for the human ABO(H) blood group B glycosyltransferase GTB, where amino acid residues 177-195 display significantly higher levels of disorder in the unliganded state than in the fully liganded state. Structural studies of mutant enzymes GTB/C80S/C196S and GTB/C80S/C196S/C209S at resolutions ranging from 1.93 to 1.40 A display the opposite trend, where the unliganded structures show nearly complete ordering of the mobile loop residues that is lost upon substrate binding. In the liganded states of the mutant structures, while the UDP moiety of the donor molecule is observed to bind in the expected location, the galactose moiety is observed to bind in a conformation significantly different from that observed for the wild-type chimeric structures. Although this would be expected to impede catalytic turnover, the kinetics of the transfer reaction are largely unaffected. These structures demonstrate that the enzymes bind the donor in a conformation more similar to the dominant solution rotamer and facilitate its gyration into the catalytically competent form. Further, by preventing active-site closure, these structures provide a basis for recently observed cooperativity in substrate binding. Finally, the mutation of C80S introduces a fully occupied UDP binding site at the enzyme dimer interface that is observed to be dependent on the binding of H antigen acceptor analog.
The human ABO(H) blood-group antigens are oligosaccharide structures that are expressed on erythrocyte and other cell surfaces. The terminal carbohydrate residue differs between the blood types and determines the immune reactivity of this antigen. Individuals with blood type A have a terminal N-acetylgalactosamine residue and those with blood type B have a terminal galactose residue. The attachment of these terminal carbohydrates are catalyzed by two different glycosyltransferases: an alpha(1-->3)N-acetylgalactosaminyltransferase (GTA) and an alpha(1-->3)galactosyltransferase (GTB) for blood types A and B, respectively. GTA and GTB are homologous enzymes that differ in only four of 354 amino-acid residues (Arg/Gly176, Gly/Ser235, Leu/Met266 and Gly/Ala268 in GTA and GTB, respectively). Diffraction-quality crystals of GTA and GTB have previously been grown from as little as 10 mg ml(-1) stock solutions in the presence of Hg, while diffraction-quality crystals of the native enzymes require much higher concentrations of protein. The structure of a single mutant C209A has been determined in the presence and absence of heavy atoms and reveals that when mercury is complexed with Cys209 it forces a significant level of disorder in a polypeptide loop (amino acids 179-195) that is known to cover the active site of the enzyme. The observation that the more highly disordered structure is more amenable to crystallization is surprising and the derivative provides insight into the mobility of this polypeptide loop compared with homologous enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.