Membrane fouling remains one of the most problematic issues surrounding membrane use in water and wastewater treatment applications. Organic and biological fouling contribute to irreversible fouling and flux decline in these processes. The aim of this study was to reduce both organic and biological fouling by modifying the surface of commercially available poly(ether sulfone) (PES) membranes using the polyelectrolyte multilayer modification method with poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium chloride) (PDADMAC), and silver nanoparticles (nanoAg) integrated onto the surface as stable, thin (15 nm) films. PSS increases the hydrophilicity of the membrane and increases the negative surface charge, while integration of nanoAg into the top PSS layer imparts biocidal characteristics to the modified surface. Fouling was simulated by filtering aqueous solutions of humic acid (5 and 20 mg L(-1)), a suspension of Escherichia coli (10(6) colony-forming units (CFU) mL(-1)), and a mixture of both foulants through unmodified and modified PES membranes under batch conditions. Filtration and cleaning studies confirmed that the modification significantly reduced organic and biological fouling.
The survival of E. coli O157:H7 in acid foods for weeks and its prolonged survival in refrigerated acid foods are well documented. This prompted the study to evaluate survival of E. coli O157:H7 in tomato and processed tomato products. The pH of the various products ranged from 4.2 to 4.8 and some products contained preservatives such as vinegar. Samples were separately inoculated with a mixture of four E. coli O157:H7 strains previously isolated from hamburger meat at lower and higher initial inoculum levels, incubated at 4 and 25 C and assayed for survival at regular intervals. In fresh whole tomato, growth was detected until day 4 and complete elimination was observed at day 7 at room temperature incubation. At refrigeration temperature, counts decreased slightly but survival was noted until day 10. In processed whole tomato, similar patterns were seen at room temperature incubation, but elimination was not observed until day 16. At refrigeration temperatures counts at day 16 were higher than the initial inoculum level. In processed tomato juice, the test strains kept on growing for over 20 days at room temperature storage, whereas at refrigeration temperature, the initial number was more or less maintained until day 23. In processed tomato sauce, incubated at room temperature, a sharp decline in number until day 6 was followed by a sharp increase in number until day 16. At refrigeration temperature, the test strain survived until day 16 with slight decrease in number. The test strains were eliminated in ketchup within 2 days at room temperature, whereas elimination was not achieved until day 8 at refrigeration temperature. In pasta sauce and snack sauce, although elimination was observed at days 11 and 7, respectively, at room temperature incubation, the test strains survived for about 22 days at refrigeration temperature without much decrease in count. Patterns were similar at higher levels of initial inoculation, but it took longer to achieve elimination of the test strains. This study demonstrated that E. coli O157:H7 can survive markedly in various tomato products, and the survival is notably prolonged at refrigeration temperatures.
Polyhydroxyalkanoates (PHAs) are naturally occurring biodegradable polymers with promising application in the formulation of plastic materials. PHAs are produced by numerous bacteria as energy/carbon storage materials from various substrates, including sugars and plant oils. Since these substrates compete as food sources, their use as raw material for industrial-scale production of PHA is limited. Therefore, efforts have been focused on seeking alternative sources for bacterial production of PHA. One substrate that seems to have great potential is the seed oil of Jatropha curcas plant. Among other favorable properties, J. curcas seed oil is non-edible, widely available, and can be cheaply produced. In this study, Pseudomonas oleovorans (ATCC 29347) was grown in a mineral salt medium supplemented with saponified J. curcas seed oil as the only carbon source under batch fermentation. Optimum PHA yield of 26.06% cell dry weight was achieved after 72 h. The PHA had a melting point (T(m)) between 150 and 160 degrees C. Results of polymer analyses by gas chromatography/mass spectrometry (GC/MS) identified only the methyl 3-hydroxybutanoate monomeric unit. However, electrospray ionization-time of flight mass spectroscopy (ESI-TOF MS) confirmed that the PHA was a copolymer with the characteristic HB/HV peaks at m/z 1155.49 (HB) and 1,169, 1,184-1,194 (HV). The data were further supported by 1H and 13C NMR analysis. Polymer analysis by gel permeation chromatography (GPC) indicated a peak molecular weight (MP) of 179,797, molecular weight (M(W)) of 166,838, weight number average mass (M(n)) of 131,847, and polydispersity (M(w)/M (n)) of 1.3. The data from this study indicate that J. curcas seed oil can be used as a substrate to produce the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV).
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used for the characterization of a partially transesterified poly(beta-hydroxyalkanoate), PHA, polymer produced by the bacterial strain Alcaligenes eutrophus using saponified vegetable oils as the sole carbon sources. The transesterification was carried out separately under acidic and basic conditions to obtain PHA oligomers weighing less than 10 kDa. The intact oligomers were detected in their cationized [M + Na](+) and [M + K](+) forms by MALDI-TOFMS. A composition analysis, using the MALDI-TOF spectra, indicate that the oligomers obtained via acid catalysis were terminated with a methyl 3-hydroxybutyrate end group, and those obtained by base catalysis had a methyl crotonate (olefinic) termination. In addition to HB (hydroxy butyrate), the oligomers were found to contain a small percentage of HV (hydroxy valerate). This was independently confirmed using gas chromatography/mass spectrometry (GC/MS). In comparison, the analysis of a commercial PHA polymer, transesterified under identical conditions, only showed the presence of HB, i.e. a pure PHB homopolymer. Copyright 1999 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.