Lactate dehydrogenase (LDH) has recently garnered attention as an attractive target for cancer therapies, owing to the enzyme's critical role in cellular metabolism. Current inhibition strategies, employing substrate or cofactor analogues, are insufficiently specific for use as pharmaceutical agents. The possibility of allosteric inhibition of LDH was postulated on the basis of theoretical docking studies of a small molecule inhibitor to LDH. The present study examined structural analogues of this proposed inhibitor to gauge its potency and attempt to elucidate the molecular mechanism of action. These analogues display encouraging inhibition of porcine heart LDH, including micromolar values and a maximum inhibition of up to 50% in the steady state. Furthermore, Michaelis-Menten kinetics and fluorescence data both suggest the simple, acetaminophen derivatives are non-competitive in binding to the enzyme. Kinetic comparisons of a panel of increasingly decorated structural analogues imply that the binding is specific, and the small molecule core provides a privileged scaffold for further pharmaceutical development of a novel, allosteric drug.
In single-molecule force spectroscopy (SMFS), a tethered molecule is stretched using a specialized instrument to study how macromolecules extend under force. One problem in SMFS is the serial and slow nature of the measurements, performed one molecule at a time. To address this long-standing challenge, we report on the origami polymer force clamp (OPFC) which enables parallelized manipulation of the mechanical forces experienced by molecules without the need for dedicated SMFS instruments or surface tethering. The OPFC positions target molecules between a rigid nanoscale DNA origami beam and a responsive polymer particle that shrinks on demand. As a proof-of-concept, we record the steady state and time-resolved mechanical unfolding dynamics of DNA hairpins using the fluorescence signal from ensembles of molecules and confirm our conclusion using modeling.
Dihydrofolate reductase (DHFR) is a well-studied, clinically relevant enzyme known for being highly dynamic over the course of its catalytic cycle. However, the role dynamic motions play in the explicit hydride transfer from the nicotinamide cofactor to the dihydrofolate substrate remains unclear because reaction initiation and direct spectroscopic examination on the appropriate time scale for such femtosecond to picosecond motions is challenging. Here, we employ pre-steady-state kinetics to observe the hydride transfer as directly as possible in two different species of DHFR: Escherichia coli and Homo sapiens. While the hydride transfer has been well-characterized in DHFR from E. coli, improvements in time resolution now allow for sub-millisecond dead times for stopped-flow spectroscopy, which reveals that the maximum rate is indeed faster than previously recorded. The rate in the human enzyme, previously only estimated, is also able to be directly observed using cutting-edge stopped-flow instrumentation. In addition to the pH dependence of the hydride transfer rates for both enzymes, we examine the primary H/D kinetic isotope effect to reveal a temperature dependence in the human enzyme that is absent from the E. coli counterpart. This dependence, which appears above a temperature of 15 °C is a shared feature among other hydride transfer enzymes and is also consistent with computational work suggesting the presence of a fast promoting-vibration that provides donor–acceptor compression on the time scale of catalysis to facilitate the chemistry step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.