Chemotherapy-induced
cognitive impairment, known also as “chemobrain”,
is a medical complication of cancer treatment that is characterized
by a general decline in cognition affecting visual and verbal memory,
attention, complex problem solving skills, and motor function. It
is estimated that one-third of patients who undergo chemotherapy treatment
will experience cognitive impairment. Alterations in the release and
uptake of dopamine and serotonin, central nervous system neurotransmitters
that play important roles in cognition, could potentially contribute
to impaired intellectual performance in those impacted by chemobrain.
To investigate how chemotherapy treatment affects these systems, fast-scan
cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used
to measure dopamine and serotonin release and uptake in coronal brain
slices containing the striatum and dorsal raphe nucleus, respectively.
Measurements were taken from rats treated weekly with selected doses
of carboplatin and from control rats treated with saline. Modeling
the stimulated dopamine release plots revealed an impairment of dopamine
release per stimulus pulse (80% of saline control at 5 mg/kg and 58%
at 20 mg/kg) after 4 weeks of carboplatin treatment. Moreover, Vmax, the maximum uptake rate of dopamine, was
also decreased (55% of saline control at 5 mg/kg and 57% at 20 mg/kg).
Nevertheless, overall dopamine content, measured in striatal brain
lysates by high performance liquid chromatography, and reserve pool
dopamine, measured by FSCV after pharmacological manipulation, did
not significantly change, suggesting that chemotherapy treatment selectively
impairs the dopamine release and uptake processes. Similarly, serotonin
release upon electrical stimulation was impaired (45% of saline control
at 20 mg/kg). Measurements of spatial learning discrimination were
taken throughout the treatment period and carboplatin was found to
alter cognition. These studies support the need for additional neurochemical
and behavioral analyses to identify the underlying mechanisms of chemotherapy-induced
cognitive disorders.
The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. Only 5 mg/kg METH induced an acute locomotor response in DKO mice, which was significantly attenuated versus WT controls. DKO mice showed a marked attenuation in the development and expression of METH-induced behavioral sensitization across doses relative to WT controls. While basal and acute METH (5 mg/kg)-evoked accumbal dialysate dopamine levels were similar between genotypes, saline-treated DKO mice showed elevated tissue content of dopamine and homovanillic acid in the dorsal striatum (DS), reflecting dysregulated dopamine homeostasis and/or metabolism. Significant reductions in DS dopamine levels were observed in METH-sensitized DKO mice compared to saline-treated controls, an effect not observed in WT mice. Notably, saline-treated DKO mice had significantly increased phosphorylated Dopamine-and cAMP-regulated phosphoprotein levels, which were not further augmented following METH sensitization, as observed in WT mice. These data indicate that AC 1/8 are critical to mechanisms subserving drug-induced behavioral sensitization and mediate nigrostriatal pathway METH sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.