The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO 2 fluxes (F day) and nighttime CO 2 fluxes (R n) using remote sensing and other data. F day and R n were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict F day and R n. We found that iNDVI was a strong predictor of F day (R 2 = 0.79, n = 66, P < 0.0001). Inclusion of evapotranspiration in the predictive equation led to improved predictions of F day (R 2 = 0.82, n = 66, P < 0.0001). Crossvalidation indicated that regression tree predictions of F day were prone to overfitting and that linear regression models were more robust. Multiple regression and regression tree models predicted R n quite well (R 2 = 0.75-0.77, n = 66) with the regression tree model being slightly more robust in crossvalidation. Temporal mapping of F day and R n is possible with these techniques and would allow the assessment of NEE in sagebrush-steppe ecosystems. Simulations of periodic F day measurements, as might be provided by a mobile flux tower, indicated that such measurements could be used in combination with iNDVI to accurately predict F day. These periodic measurements could maximize the utility of expensive flux towers for evaluating various carbon management strategies, carbon certification, and validation and calibration of carbon flux models.
A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.
Remotely monitoring changes in central U.S. grasslands is challenging because these landscapes tend to respond quickly to disturbances and changes in weather. Such dynamic responses influence nutrient cycling, greenhouse gas contributions, habitat availability for wildlife, and other ecosystem processes and services. Traditionally, coarse-resolution satellite data acquired at daily intervals have been used for monitoring. Recently, the harmonized Landsat-8 and Sentinel-2 (HLS) data increased the temporal frequency of the data. Here we investigated if the increased data frequency provided adequate observations to characterize highly dynamic grassland processes. We evaluated HLS data available for 2016 to (1) determine if data from Sentinel-2 contributed to an improvement in characterizing landscape processes over Landsat-8 data alone, and (2) quantify how observation frequency impacted results. Specifically, we investigated into estimating annual vegetation phenology, detecting burn scars from fire, and modeling within-season wetland hydroperiod and growth of aquatic vegetation. We observed increased sensitivity to the start of the growing season (SOST) with the HLS data. Our estimates of the grassland SOST compared well with ground estimates collected at a phenological camera site. We used the Continuous Change Detection and Classification (CCDC) algorithm to assess if the HLS data improved our detection of burn scars following grassland fires and found that detection was considerably influenced by the seasonal timing of the fires. The grassland burned in early spring recovered too quickly to be detected as change events by CCDC; instead, the spectral characteristics following these fires were incorporated as part of the ongoing time-series models. In contrast, the spectral effects from late-season fires were detected both by Landsat-8 data and HLS data. For wetland-rich areas, we used a modified version of the CCDC algorithm to track within-season dynamics of water and aquatic vegetation. The addition of Sentinel-2 data provided the potential to build full time series models to better distinguish different wetland types, suggesting that the temporal density of data was sufficient for within-season characterization of wetland dynamics. Although the different data frequency, in both the spatial and temporal dimensions, could cause inconsistent model estimation or sensitivity sometimes; overall, the temporal frequency of the HLS data improved our ability to track within-season grassland dynamics and improved results for areas prone to cloud contamination. The results suggest a greater frequency of observations, such as from harmonizing data across all comparable Landsat and Sentinel sensors, is still needed. For our study areas, at least a 3-day revisit interval during the early growing season (weeks 14–17) is required to provide a >50% probability of obtaining weekly clear observations.
Estimates of mean annual streamflow are needed for a variety of hydrologic assessments. Away from gage locations, regional regression equations that are a function of upstream area, precipitation, and temperature are commonly used. Geographic information systems technology has facilitated their use for projects, but traditional approaches using the polygon overlay operator have been too inefficient for national scale applications. As an alternative, the Elevation Derivatives for National Applications (EDNA) database was used as a framework for a fully distributed implementation of mean annual streamflow regional regression equations. The raster “flow accumulation” operator was used to efficiently achieve spatially continuous parameterization of the equations for every 30 m grid cell of the conterminous United States (U.S.). Results were confirmed by comparing with measured flows at stations of the Hydro‐Climatic Data Network, and their applications value demonstrated in the development of a national geospatial hydropower assessment. Interactive tools at the EDNA website make possible the fast and efficient query of mean annual streamflow for any location in the conterminous U.S., providing a valuable complement to other national initiatives (StreamStats and the National Hydrography Dataset Plus).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.