Herbivory by domestic and wild ungulates is a major driver of global vegetation dynamics. However, grazing is not considered in dynamic global vegetation models, or more generally in studies of the effects of environmental change on ecosystems at regional to global scale. An obstacle to this is a lack of empirical tests of several hypotheses linking plant traits with grazing. We, therefore, set out to test whether some widely recognized trait responses to grazing are consistent at the global level. We conducted a meta-analysis of plant trait responses to grazing, based on 197 studies from all major regions of the world, and using six major conceptual models of trait response to grazing as a framework. Data were available for seven plant traits: life history, canopy height, habit, architecture, growth form (forb, graminoid, herbaceous legume, woody), palatability, and geographic origin. Covariates were precipitation and evolutionary history of herbivory. Overall, grazing favoured annual over perennial plants, short plants over tall plants, prostrate over erect plants, and stoloniferous and rosette architecture over tussock architecture. There was no consistent effect of grazing on growth form. Some response patterns were modified by particular combinations of precipitation and history of herbivory. Climatic and historical contexts are therefore essential for understanding plant trait responses to grazing. Our study identifies some key traits to be incorporated into plant functional classifications for the explicit consideration of grazing into global vegetation models used in global change research. Importantly, our results suggest that plant functional type classifications and response rules need to be specific to regions with different climate and herbivory history.
There is widespread uncertainty about the nature and role of morphological plasticity in resource competition in plant communities. We have assayed the foraging characteristics of leaf canopies and root systems of eight herbaceous plants of contrasted ecology using new techniques to create controlled patchiness in light and mineral nutrient supply. The results are compared with those of a conventional competition experiment. Measurements of dry matter partitioning and growth in patchy conditions indicate a consistent positive association between the foraging characteristics of roots and shoots, supporting the hypothesis of strong interdependence of competitive abilities for light and mineral nutrients. Differences are identified in the abilities of dominant and subordinate plants to forage on coarse and fine scalcs. It is suggested that a trade-off exists in the scale ("high" in dominants) and precision (high in subordinates) with which resources are intercepted and that this trade-off contributes to diversity in communities of competing plants.
Two of the central hypotheses of the triangular model of primary plant strategies were tested by a movel technique involving seven grasses of contrasted ecology grown in pure stands and an additive mixture on an experimental matrix of crossed gradients of mineral nutrient stress and vegetation disturbance. The experimental design allowed reductions in vegetative and reproductive vigor resulting from interspecific competition to be distinguished from those arising from direct effects of nutrient stress and vegetation disturbance. It was also possible to determine the extent to which competitive suppression of each species was affected by stress and disturbance. In isolation, all species showed maximum vegetative and reproductive vigor at high soil fertility and low disturbance. In the mixture, absolute reductions in biomass and flowering due to competition were greatest at high soil fertility and low disturbance, and the species of most extreme strategy became restricted to areas of the matrix broadly consistent with those predicted by strategy classification. When standardized for differences in biomass in pure stands, the effect of competition remained relatively constant across the stress—disturbance matrix for all species except Poa annua, which was less restricted by competition at high intensities of stress. There were marked and consistent differences between species in their susceptibility to competition. At both high and low soil fertility, two species of natural occurrence on infertile soils (Festuca ovina, Bromus erectus) were poor competitors relative to Arrhenatherum elatius, a widespread dominant of productive grasslands. The effect of competition was least severe on flowering of annuals in low—stress portions of the matrix. If competition is assessed simply as the percentage of reduction in biomass between pure and mixed stands it appears that competition intensity is constant across different intensities of stress and disturbances. However, observations that maximum reductions in biomass coincided with low stress and low disturbance, that competition decreased in importance as a factor reducing yield and flowering (relative to stress and disturbance) as stress and disturbance intensities increased, and that there was a consistently inferior competitive ability of plants from infertile soils at all positions on the matrix all support the hypothesis that competition declines in importance as a vegetation determinant in the vegetation of infertile soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.