In addition to its role as a survival factor, nerve growth factor (NGF) has been implicated in initiating apoptosis in restricted cell types both during development and after terminal cell differentiation. NGF binds to the TrkA tyrosine kinase and the p75 neurotrophin receptor, a member of the tumor necrosis factor cytokine family. To understand the mechanisms underlying survival versus death decisions, the TrkA receptor was introduced into oligodendrocyte cell cultures that undergo apoptosis in a p75-dependent manner. Here we report that activation of the TrkA NGF receptor in oligodendrocytes negates cell death by the p75 receptor. TrkA-mediated rescue from apoptosis correlated with mitogen-activated protein kinase activation. Concurrently, activation of TrkA in oligodendrocytes resulted in suppression of c-jun kinase activity initiated by p75, whereas induction of NFB activity by p75 was unaffected. These results indicate that TrkA-mediated rescue involves not only activation of survival signals but also simultaneous suppression of a death signal by p75. The selective interplay between tyrosine kinase and cytokine receptors provides a novel mechanism that achieves alternative cellular responses by merging signals from different ligand-receptor systems.
TrkB belongs to the Trk family of tyrosine kinase receptors and mediates the response to brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4/5 (NT‐4/5). Here, we report that both truncated and full‐length forms of TrkB receptors are expressed in developing cerebellar granule neurons. BDNF and NT‐4/5 increased the survival of cultured cerebellar granule neurons. BDNF and NT‐4/5 also induced an autophosphorylation of TrkB receptors and subsequently resulted in a phosphorylation and binding of phospholipase C‐γ (PLC‐γ) and SH2‐containing sequence to the autophosphorylated TrkB receptors. Both contain src homology 2 (SH2) regions. In keeping with a signaling function of PLC‐γ, BDNF increased the phosphatidylinositol (PI) turnover and elevated intracellular calcium levels. To investigate the involvement of protein kinase C (PKC) in the survival of granular neurons, we show here activation of PKC after BDNF or TPA treatment and blocking of the observed survival‐promoting effects of BDNF and TPA with calphostin C, a specific PKC inhibitor. In addition, BDNF activated c‐ras in a concentration‐dependent manner. These results suggest that two different pathways, the c‐ras and the PLC‐γ pathway, are activated by TrkB receptors in primary neurons and that PKC activation is involved in the survival promoting effect of BDNF.
Lung cancer causes more than 140,000 deaths annually in the United States alone, and the prognosis for non-small cell lung cancer (NSCLC) is particularly poor. Therapies using small molecules that preferentially kill lung tumor cells by inducing cellular suicide (apoptosis) would therefore be highly desirable. Retinoids have shown promise as cancer preventive and cancer therapeutic agents. Retinoid signals are mediated by two classes of nuclear receptors: the retinoic acid receptors (RAR alpha, beta, and gamma) and the retinoid X receptors (RXR alpha, beta and gamma). These receptors usually bind as heterodimers to specific DNA sequences and/or interact with other transcriptional regulators, such as AP-1 (ref. 10) to regulate gene transcription. Synthetic retinoids can be made that activate only specific portions of the complex retinoid response network and activate selective biological programs. To identify retinoids with novel biological activities, we used a high-throughput "biological activity fingerprint" screen on a large library of retinoids and retinoid-related molecules (RRMs). We identified new structures that are highly effective against lung cancer cells in vitro, inducing apoptosis. We show here for one of these compounds that it is very effective against a human NSCLC in vivo in an animal model. These new molecules show a distinct pattern of receptor signaling.
Recombinase-mediated unidirectional DNA inversion and transcriptional arrest is a promising strategy for high throughput conditional mutagenesis in the mouse. Banks of mouse embryonic stem cells with defined, transcriptionally silent insertions that can be activated by Cre recombinase would take advantage of existing transgenic Cre lines to rapidly produce hundreds of lineage specific and temporally controlled knockout mice for each gene, thereby introducing significant parallelism to functional gene annotation. However, the extent to which this strategy results in effective gene knockout has not been established. To test the feasibility of this strategy we targeted ErbB3, a member of the ErbB family of tyrosine kinase receptors, using this strategy. Insertion of a reversed "flipflox" vector consisting of a gene inactivation cassette (GI) and an internal ribosome entry site (IRES)-GFP reporter into intron 1 of ErbB3 was transcriptionally silent and did not affect ErbB3 expression. Crosses with ubiquitous and lineage specific Cre recombinase expressing lines permanently inverted the inserted GI cassette and blocked ErbB3 expression. Unidirectional DNA inversion by in vivo recombination is an effective strategy for targeted or ubiquitous gene knockout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.