In order to understand the fluctuations imposed upon low frequency (50 to 500 Hz) acoustic signals due to coastal internal waves, a large multilaboratory, multidisciplinary experiment was performed in the Mid-Atlantic Bight in the summer of 1995. This experiment featured the most complete set of environmental measurements (especially physical oceanography and geology) made to date in support of a coastal acoustics study. This support enabled the correlation of acoustic fluctuations to clearly observed ocean processes, especially those associated with the internal wave field. More specifically, a 16 element WHOI vertical line array (WVLA) was moored in 70 m of water off the New Jersey coast. Tomography sources of 224 Hz and 400 Hz were moored 32 km directly shoreward of this array, such that an acoustic path was constructed that was anti-parallel to the primary, onshore propagation direction for shelf generated internal wave solitons. These nonlinear internal waves, produced in packets as the tide shifts from ebb to flood, produce strong semidiurnal effects on the acoustic signals at our measurement location. Specifically, the internal waves in the acoustic waveguide cause significant coupling of energy between the propagating acoustic modes, resulting in broadband fluctuations in modal intensity, travel-time, and temporal coherence. The strong correlations between the environmental parameters and the internal wave field include an interesting sensitivity of the spread of an acoustic pulse to solitons near the receiver.
A space- and time-dependent internal wave model was developed for a shallow water area on the New Jersey continental shelf and combined with a propagation algorithm to perform numerical simulations of acoustic field variability. This data-constrained environmental model links the oceanographic field, dominated by internal waves, to the random sound speed distribution that drives acoustic field fluctuations in this region. Working with a suite of environmental measurements along a 42-km track, a parameter set was developed that characterized the influence of the internal wave field on sound speed perturbations in the water column. The acoustic propagation environment was reconstructed from this set in conjunction with bottom parameters extracted by use of acoustic inversion techniques. The resulting space- and time-varying sound speed field was synthesized from an internal wave field composed of both a spatially diffuse (linear) contribution and a spatially localized (nonlinear) component, the latter consisting of solitary waves propagating with the internal tide. Acoustic simulation results at 224 and 400 Hz were obtained from a solution to an elastic parabolic equation and are presented as examples of propagation through this evolving environment. Modal decomposition of the acoustic field received at a vertical line array was used to clarify the effects of both internal wave contributions to the complex structure of the received signals.
As part of the Shallow Water Acoustics in a Random Medium (SWARM) experiment, a 16 element WHOI vertical line array (WVLA) was moored in 70 m of water off the New Jersey coast. A 400-Hz acoustic tomography source was moored some 32-km shoreward of this array, such that an acoustic path was created that was anti-parallel to the primary propagation direction for shelf-generated internal wave solitons. The presence of these soliton internal waves in the acoustic waveguide causes significant coupling of energy between propagating acoustic modes, creating fluctuations in modal intensities and modal peak arrival times, as well as time spreading of the pulses. Two methods by which acoustic propagation and scattering in soliton-filled waveguides can be modeled are presented here in order to understand and explain the scattering observed in the SWARM field data. The first method utilizes the Preisig and Duda [IEEE J. Ocean. Eng. 22, 256-269 (1997)] Sudden Interface Approximation (SIA) to represent the solitons. The second method, which is computationally slower, uses a finely meshed, "propagated" thermistor record to simulate the solitons in the SWARM experiment waveguide. Both numerical methods are found to generate scattering characteristics that are similar to the SWARM field data.
Matched-field inversion of range-dependent geoacoustic properties is studied using broadband (50–200 Hz, 240–260 Hz, and 550–600 Hz) acoustic data collected in the South China Sea during the ASIAEx01 experiment. Range-dependent sediment sound-speed and attenuation profiles are inverted using a global optimization scheme based on genetic algorithms to minimize an objective function defined by the Bartlett processor output. For the forward model, an efficient coupled normal mode model is used to calculate broadband acoustic fields incorporating range-dependent bathymetry and sediment layers thickness obtained by chirp sonar surveys. Inversions were performed starting from a range-independent region with a relatively short source/receiver distance. Additional geoacoustic profiles were inverted by incorporating the previously inverted profiles as the source/receiver distance was increased. The results obtained at three different frequency bands are in good agreement, especially when the range-dependency of bathymetry and sediment layers thickness is included in the inversion. [Work supported by ONR.]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.