Abstract. Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N 2 O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N 2 O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N 2 O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N 2 O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate.Daily N 2 O fluxes ranged from -3.8 to 2734 g N 2 O-N ha -1 day -1 and cumulative N 2 O emissions ranged from 96 to 6659 g N 2 O-N ha -1 during crop growth. Emissions of N 2 O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N 2 O emission factors (EF, percent of applied N emitted) in the range of 1.2-3.2%. In contrast, the EFs for the two drier experiments were 0.41-0.56% with no effect of N fertiliser rate. Additional 15 N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil-plant system between sowing and harvest. Total 15 N unaccounted was in the range of 28-45% of applied N and was presumed to be emitted as N 2 O + N 2 . At the drier site, the ratio of N 2 (estimated by difference) to N 2 O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment.Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N 2 O) and agronomic (N 2 + N 2 O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.
Farmers on Vertosols in the northern grains region of Australia are increasingly using pre-crop broadcasting and in-crop topdressing of nitrogen (N) fertilisers. Surface application risks gaseous loss via ammonia volatilisation, but the magnitude of N loss is unknown. Because both soil properties and environmental conditions influence ammonia volatilisation, measurements need to be field-based and non-intrusive, e.g. micrometeorological. We used an integrated horizontal flux technique to measure ammonia volatilised from neutral to alkaline Vertosols for a month after the application of several fertiliser products in 10 bare-fallow paddocks, seven mid-tillering wheat crops, and two perennial-grass-based pastures. Ammonia loss from urea averaged 11% (5.4–19%) when applied to fallow paddocks, 4.8% (3.1–7.6%) when applied to wheat, and 27% when applied to pasture. Volatilisation from urea applied to pastures was high, because there was little rain after spreading. Losses from ammonium sulfate applied to pastures were >60% less than from urea. Nitrogen losses from ammonium sulfate were high (18.6–33.8%) from soils with >10 g 100 g–1 of calcium carbonate (CaCO3), but were 52% less than from urea at five of eight fallow paddocks on non-calcareous soils, and 76% less than from urea at the two pasture paddocks. Coating urea with N-(n-butyl)thiophosphoric triamide reduced ammonia loss at just two of eight fallow paddocks and one of three in-crop paddocks. Ammonia volatilisation from aqueous solutions of urea, urea ammonium nitrate, and ammonium nitrate were either less than or no different from losses from granulated urea, but not consistent. With the exception of ammonium sulfate applied to soils with >10 g 100 g–1 of CaCO3, surface application of N fertiliser during autumn–winter on cropped Vertosols in the Australian northern grains region does not lead to major N loss via ammonia volatilisation.
Weed-detecting reflectance sensors were modified to allow selective interrogation of the near infrared–red ratio to estimate differences in plant biomass. Sampling was programmed to correspond to the forward movement of the field of view of the sensors. There was a linear relationship (r 2 > 0.80) between actual biomass and crop canopy analyzer (CCA) values up to 2,000 kg/ha for winter wheat sequentially thinned to create different amounts of biomass and up to 1,000 kg/ha for spring wheat sampled at different stages of development. At higher amounts of biomass the sensors underestimated the actual biomass. A linear relationship (r 2 = 0.73) was obtained with the CCA for the biomass of 76 chickpea cultivars at 500 growing degree days (GDD500). The reflectance sensors were used to determine differences in the herbicide response of soybean cultivars sprayed with increasing rates of herbicides. The CCA data resulted in better dose–response relationships than did biomass data for bromoxynil at 0.8 kg ai/ha and glyphosate at 1.35 kg ai/ha. There was no phytotoxicity to soybean with imazethapyr at 1.44 kg ai/ha. The method offers a quick and nondestructive means to measure differences in early-season crop growth. It also has potential in selecting crop cultivars with greater seedling vigor, as an indicator of crop nutrient status, in plant disease assessment, in determining crop cultivar responses to increasing herbicide dose rates, in weed mapping, and in studying temporal changes in crop or weed biomass.
Delaying the accumulation of soil nitrate from urea applied at sowing should mitigate nitrous oxide (N2O) emissions without compromising optimum crop production. This delay may be achieved chemically using a nitrification inhibitor such as 3,4 dimethylpyrazole phosphate (DMPP), or physically by coating urea with a degradable polymer (PCU). In five field experiments across three summers, the impact of DMPP-coated urea applied at sowing on soil mineral nitrogen (N), N2O emissions and yields of grain sorghum or sunflower grown on sub-tropical Vertosols was assessed. At two experiments, DMPP effects on plant N uptake, soil N movement and total N loss were determined with 15N. One experiment included PCU and several blends: urea+DMPP-urea; urea+PCU; urea+DMPP-urea+PCU. Averaged across all experiments, DMPP reduced cumulative N2O emitted by 92% (range: 65–123%) and N2O emission factor (EF: percent of applied N emitted) by 88%. There was no statistical difference in N2O emitted between the 0N control and DMPP-urea. PCU reduced N2O emitted by 27% and EF by 34%. The urea+DMPP-urea blend also nullified urea-induced N2O, but urea+PCU increased N2O emissions and decreased grain yield due to a mismatch between soil N availability and plant N demand. DMPP arrested 15N movement in soil and reduced total 15N loss from 35% to 15% at one of the two 15N experiments. Applying DMPP-urea at sowing is an effective N strategy that nullifies urea-induced N2O emissions, maintains crop yield, and retains N in the soil–plant system. Negative impacts of the PCU+urea blend highlight the influence of growing season conditions on fertiliser N release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.