To support climate research, the World Climate Research Programme (WCRP) initiated a new radiometric network, the Baseline Surface Radiation Network (BSRN). The network aims at providing validation material for satellite radiometry and climate models. It further aims at detecting long-term variations in irradiances at the earth's surface, which are believed to play an important role in climate change. The network and its instrumentation are designed 1) to cover major climate zones, 2) to provide the accuracy required to meet the objectives, and 3) to ensure homogenized standards for a long period in the future. The limits of the accuracy are defined to reach these goals. The suitable instruments and instrumentations have been determined and the methods for observations and data management have been agreed on at all stations. Measurements of irradiances are at 1 Hz, and the 1-min statistics (mean, standard deviation, and extreme values) with quality flags are stored at a centralized data archive at the WCRP's World Radiation Monitoring Center (WRMC) in Zurich, Switzerland. The data are quality controlled both at stations and at the WRMC. The original 1-min irradiance statistics will be stored at the WRMC for 10 years, while hourly mean values will be transferred to the World Radiation Data Center in St. Petersburg, Russia. The BSRN, consisting of 15 stations, covers the earth's surface from 80°N to 90°S, and will soon be joined by seven more stations. The data are available to scientific communities in various ways depending on the communication environment of the users. The present article discusses the scientific base, organizational and technical aspects of the network, and data retrieval methods; shows various application possibilities; and presents the future tasks to be accomplished.
Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness () at visible and near-infrared wavelengths, from which best-fit values of Ångström"s exponent were calculated. Analysing these data, the monthly mean values of (0.50 µm) and and the relative frequency histograms of the daily mean values of both parameters were determined for winterspring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of versus (0.50 µm) showed: (i) a considerable increase in (0.50 µm) for the Arctic aerosol from summer to winter-spring, without marked changes in ; and (ii) a marked increase in (0.50 µm) passing from the Antarctic Plateau to coastal sites, whereas decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of () and at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and offshore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of () over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of fine and accumulation/coarse mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of fine and accumulation/coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal 4 and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface-atmosphere system over polar regions.
G lobal climate change is visibly and tangibly manifested through the Arctic cryospheric system: sea ice loss, earlier spring snowmelts, thawing permafrost, retreating glaciers, and coastal erosion. While not as visibly manifest, the role of the atmosphere is also a critical component in determining the trajectory of the Arctic system. The atmosphere not only drives change, but is reciprocally being modified through a complex web of feedbacks, and is the fast-track mechanism for the transport of energy and moisture through the global system that links climate and weather. For decades, it has been recognized that fundamental components of the atmospheric system such as clouds, atmospheric trace gases, aerosols, and atmosphere-surface exchange processes compose some of the major uncertainties that limit the diagnostic or predictive skill of coupled atmosphere-ice-ocean-terrestrial models (IPCC 2013, chapter 9). Arctic nations have responded in recent decades by establishing A micrometeorological tower in Tiksi, Russia is used to determine the atmospheric-surface energy balance. (Photo credit: Vasily Kustov)
A methodology for direct-Sun ozone retrieval using the ultraviolet multifilter rotating shadow-band radiometer (UV-MFRSR) is presented. Total vertical column ozone was retrieved in three stations: Mauna Loa, Hawaii, in the U.S., and Regina, Saskatchewan, and Toronto, Ontario, in Canada, from direct solar irradiances of the UV-MFRSR at 325-, 305-, 332-, and 311-nm channels (2-nm FWHM). The total uncertainty of ozone retrievals in this study is +/-2.0%. For Mauna Loa the mean ratios of the UV-MFRSR column ozone retrievals to the collocated Dobson and Brewer were 0.998 and 0.986 between May and September of 1999. The mean ratio of UV-MFRSR retrievals to the collocated Brewer retrievals was 1.012 in Toronto between April and August of 1999, and the mean ratio of retrievals of the UV-MFRSR to the collocated Brewer was 0.988 in Regina between June and September of 1999. Total vertical column ozone values for solar zenith angles of >70 degrees were not considered, because of the signal-to-noise ratio and the angular response of the instruments, and were not used in the evaluation. The advantages of total vertical column ozone retrieval using UV-MFRSR include relatively low cost, computer-controlled operation, automated calibration stability checks, and minimal maintenance. It allows for the real-time measurement of total vertical column ozone. The UV-MFRSR is being used at 28 sites across the United States and 2 sites in Canada that form the U.S. Department of Agriculture UV-B Radiation Monitoring and Research Program. This constitutes a unique network of total vertical colunm ozone measurement.
The objectives of the research program reported upon here were (1) to measure ambient levels of UV radiation and determine whichvariables most strongly affected its attenuation in the waters of the estuary and Gulf of St. Lawrence, Canada; and (2) to investigate the potential direct impacts of W radiation on species of crustacean zooplankton and fish whose early life stages are planktonic. In this geographic region, productivity-determining biophysical interactions occur in the upper 0 to 30 m of the water column. Measurements of the diffuse attenuation coefficients for ultraviolet-B radiation ( W -B , 280 to 320 nm) at various locations in this region indicated maximum 10% depths (the depth to which 10% of the surface energy penetrates at a given wavelength) of 3 to 4 m at a wavelength of 310 nm. Organisms residing in this layer-including the eggs and larvae of Calanus finmarchicus and Atlantic cod Gadus morhua-are exposed to biologically damaging levels of W radiation. As a result of these physical and biological characteristics, this system offered a relevant opportunity to assess the impacts of UV on subarctic marine ecosystems. Eggs of C. finmarchicus were incubated under the sun, with and without the W -B and/or UV-A (320 to 400 nm) wavebands. W-exposed eggs exhibited low percent hatchmg compared to those protected from W : W radiation had a strong negative impact on C. finmarchicus eggs. Further, percent hatching in W-B-exposed eggs was not significantly lower than that in eggs exposed to UV-A only: under natural sunlight, UV-A radiation appeared to be more detrimental to C. finmarchicus embryos than was UV-B. In analogous experiments with Atlantic cod eggs, exposure to UV-B produced a significant negative effect. However, UV-A had no negative effect on cod eggs. Additional experiments using a solar simulator (SS) revealed high wavelength-dependent mortality in both C. finmarchicus and cod embryos exposed to UV. The strongest effects occurred under exposures to wavelengths below 312 nm. At the shorter wavelengths (<305 nm) UV-B-induced mortality was strongly dose-dependent, but (for both C. finmarchicus and cod) not significantly influenced by dose-rate. Thus, at least within the limits of the exposures under which the biological weighting functions (BWFs) were generated, reciprocity held. The BWFs derived for UV-B-induced mortality in C. finmarchicus and cod eggs were similar in shape to the action spectrum for UV-B effects on naked DNA. Further, the wavelengthdependence of DNA damage was similar to that for the mortality effect. These observations suggest that W-induced mortality in C. finmarchicus and cod eggs is a direct result of DNA damage. There was no evidence of a detrimental effect of UV-A radiation in these SS-derived results. A mathematical model that includes the BWFs, vertical mixing of eggs, meteorological and hydrographic conditions, and ozone depletion, indicates that W-induced mortality in the C. finmarchicus egg population could be as high as 32.5 %, while the impact on the co...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.