ABSTRACT:The thiophene moiety is considered a structural alert in molecular design in drug discovery, largely because several thiophene-containing drugs, including tienilic acid and suprofen, have been withdrawn from the market because of toxicities. Reactive thiophene intermediates, activated via sulfur oxidation or ring epoxidation, are possible culprits for these adverse side effects. In this work, the metabolic activation of an anti-inflammatory agent, 1-(3-carbamoyl-5-(2,3,5-trichlorobenzamido)thiophen-2-yl)urea), containing a 2,5-diaminothiophene structure, was studied in liver microsomes in the presence of glutathione or N-acetylcysteine as trapping agents. In addition, the glutathione conjugate was detected in bile from a bile duct-cannulated rat study. The structure of the glutathione conjugate was identified by mass spectrometry and 1 H NMR. The glutathione molecule was attached to the thiophene ring, replacing the existing proton. Metabolic phenotyping experiments, using chemical inhibitors or recombinant cytochromes P450 (P450), demonstrated that CYP3A4 was the major P450 enzyme responsible for the metabolic activation, followed by CYP1A2, 2Cs, and 2D6. A novel metabolic activation mechanism is proposed whereby the 2,5-diaminothiophene moiety undergoes oxidation to a 2,5-diimine thiophene reactive intermediate. This mechanism was used to support efforts to eliminate reactive metabolite generation via structural modification of ring substituents using structure-activity relationships. The disruption of formation of the 2,5-diimine reactive intermediate resulted in the elimination of glutathione conjugate formation both in vitro and in vivo and provided a rational approach to mitigating potential safety risks associated with this class of thiophenes in drug research and development.
Madin-Darby canine kidney cells, suggesting that it is a substrate, not an inhibitor, of the MRP2/ABCC2 transporter. To investigate the mechanism for the nonlinear pharmacokinetics, bile duct-cannulated rats were used to obtain time profiles of plasma concentration, biliary, and urinary excretion after intravenous administration at various doses. The plasma clearance increased remarkably with decreased dose, from 1.5 ml/min/kg at 5 mg/kg to 14.9 ml/min/kg at 0.05 mg/kg. A dose-dependent biliary excretion also was observed. The results revealed that saturation of hepatobiliary secretion played a role in the dose-dependent changes in total body clearance and biliary clearance. Saturating concentrations of the Mrp2/Abcc2 substrate, BPCPU, causing decreased hepatobiliary clearance could be the major cause for the nonlinear pharmacokinetics observed in rats.
Previously we demonstrated that the torsion angle between two biphenyl rings forming a three-dimensional conformation is the determinant factor for multi-drug resistance protein 2 (Mrp2/Abcc2) interaction [1]. More recently, we reported a heterocyclic compound, 1-(1-(4-bromophenyl)-3-carbamoyl-1H-pyrazol-4-yl) urea that shares the polar head groups with the biphenyl-substituted heterocycles, is highly secreted from bile by Mrp2/Abcc2, [2]. Collectively we hypothesized that the two branched polar groups and linkers might be essential with proposed Mrp2/Abcc2 recognition fitting in two primarily positive regions deep in the binding site. To test the hypothesis, a discovery lead compound (Compound 1) was examined to confirm the Mrp2/Abcc2 involvement resulting in hepatobiliary secretion in rats. The structural requirement of Mrp2/Abcc2 recognition was further explored in a series of thiophene amides derivatives divided into eight structural classes, with structural changes focused on the amide linker orientation or substitution from amide and sulfonamide to alkene, alkane, or alkyne linkers. In Caco-2 cell bidirectional transport assays and Mrp2/Abcc2 membrane vesicle uptake assays, the involvement of Mrp2/Abcc2 mediated transport was confirmed in structural classes 1 - 5, which contains polar amide or sulfonamide linker, but not in classes 6 - 8 with non-polar aliphatic linker. The Mrp2/Abcc2 recognition showed strong correlation with structural descriptors in predictive Bayesian model, as well as with polar surface area and lipophilicity (LogP). The result provided valuable information for predicting transporter recognition in silico, for improved predictions of transporter involved ADME in early drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.