A method is needed to objectively quantify pedestrians’ perception of safety and comfort in the roadside environment. This quantification, or mathematical relationship, would provide a measure of how well roadways accommodate pedestrian travel. Essentially, it would provide a measure of pedestrian level of service (LOS) within a roadway environment. Such a measure of walking conditions would greatly aid in roadway cross-sectional design and would help evaluate and prioritize the needs of existing roadways for sidewalk retrofit construction. Furthermore, the measure can be used to evaluate traffic-calming strategies and streetscape designs for their effectiveness in improving the pedestrian environment. Such a measure would make it possible to merge pedestrian facility programming into the mainstream of transportation planning, design, and construction. To meet the need for such a method, as well as to fulfill a state mandate to establish levels of service standards for all transportation modes, the Florida Department of Transportation sponsored the development of the Pedestrian LOS Model. The model was developed through a stepwise multivariable regression analysis of 1,250 observations from an event that placed 75 people on a roadway walking course in the Pensacola, Florida, metropolitan area. The Pedestrian LOS Model incorporates the statistically significant roadway and traffic variables that describe pedestrians’ perception of safety or comfort in the roadway environment between intersections. It is similar in approach to methods used to assess automobile operators’ level of service established in the Highway Capacity Manual.
The primary focus of this study by Sprinkle Consulting Engineers, Inc. is to develop a bicycle-quality, or level-of-service, model for applications in U.S. metropolitan areas. Although there are several model forms being used throughout the United States that attempt to quantify road suitability or the quality of service afforded bicyclists traveling the street and roadway networks of urbanized areas, to date there have been no statistically calibrated models published. The statistically calibrated level-of-service model described here is based on real-time perceptions from bicyclists traveling in actual urban traffic and roadway conditions. The study’s participants represented a cross section of age, gender, experience level, and geographic origin of the population of cyclists that use the metropolitan road networks in the United States. The test course is representative of the collector and arterial street systems of North American urban areas. Although further hypothesis testing is being conducted and additional studies are planned to test the need for disaggregate models for central business district streets with high turnover parking, truck routes, and two-lane high-speed rural highways, the general bicycle level-of-service model reported here is highly reliable, has a high correlation coefficient ( R2 = 0.73), and is transferable to the vast majority of United States metropolitan areas. The study reveals that pavement-surface conditions and striping of bicycle lanes are important factors in the quality of service.
This paper presents the results of research to develop a national method for the multimodal assessment of the quality of service provided by an urban street. The method considers the level of service from the point of view of four types of travelers typically using the urban street: auto driver, transit passenger, bicycle rider, and pedestrian. Video laboratories and transit onboard surveys were used to develop data sets of the quality of service perceived by the general public for each of the modes of travel on the urban street. The laboratories were conducted in several different metropolitan areas of the United States. Four level-of-service (LOS) models were developed, one for each mode. The four LOS models share a common measure, user satisfaction. The models assign a letter grade LOS (A–F) based on the street cross section, intersection controls, and traffic characteristics (auto, transit, bicycle, and pedestrian volumes on the street). The models can be used in combination to compare the trade-offs of different street cross sections from the unique perspectives of each mode. The models are particularly useful for testing the impacts of converting auto through lanes to bicycle lanes, wider sidewalks, and wider planter strips.
The Florida Department of Transportation (DOT) has initiated multi-modal level-of-service (LOS) methodologies, including that for the bicycle travel mode. It has already adopted a bicycle LOS methodology for the roadway segment portion of the transportation network, the Bicycle Level of Service Model. Florida DOT’s ultimate goal is to develop corridor- and facilities-level LOS methodologies. Toward that goal, Florida DOT sponsored research to develop the first part of an intersection bicycle LOS methodology, the Intersection LOS for the bicycle through movement. This Intersection LOS for the bicycle through movement would provide a measure of the level of safety and comfort experienced by bicyclists riding through an intersection. The Intersection LOS model for the bicycle through movement is based on Pearson correlation analyses and stepwise regression modeling of approximately 1,000 combined real-time perceptions from bicyclists traveling a course through a typical U.S. metropolitan area’s signalized intersections. The study’s participants represented a cross section of age, gender, and geographic origin of the population of cyclists. Although further hypothesis testing is being conducted, the resulting general model for the Intersection LOS for the bicycle through movement is highly reliable, has a high correlation coefficient ( R2 = 0.83) with the average observations, and is transferable to the vast majority of U.S. metropolitan areas. The study reveals that roadway traffic volume, total width of the outside through lane, and the intersection (cross street) crossing distance are primary factors in the Intersection LOS for the bicycle through movement.
This paper documents a study performed to develop a level-of-service (LOS) model that accurately represents pedestrians’ perceptions of crossings at signalized intersections. This model incorporates perceived safety and comfort (i.e., perceived exposure and conflicts) and operations (i.e., delay and signalization). Data for the model were obtained from an innovative Walk for Science field data collection event and video simulations. The data consist of ( a) participants’ perceptions of safety, comfort, and operations as they walk through selected signalized intersections and ( b) the design and operational characteristics of these intersections. The resulting model provides a measure of the pedestrian's perspective on how well an intersection's geometric and operational characteristics meets his or her needs. The pedestrian LOS model for intersections described in this paper is based on Pearson correlation analyses and stepwise regression modeling of approximately 800 combined real-time perceptions (observations) from pedestrians walking a course through signalized intersections in a typical U.S. metropolitan area. The resulting general model for the pedestrian LOS at intersections is highly reliable, has a high correlation coefficient ( R2 = .73) with the average observations, and is transferable to the majority of metropolitan areas in the United States. Primary factors in the pedestrian LOS model for intersections include right-turn-on-red volumes for the street being crossed, permissive left turns from the street parallel to the crosswalk motor vehicle volume on the street being crossed, midblock 85th percentile speed of the vehicles on the street being crossed, number of lanes being crossed, pedestrian's delay, and presence or absence of right-turn channelization islands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.