The microtubule-associated protein tau has risk alleles for both Alzheimer's disease and Parkinson's disease and mutations that cause brain degenerative diseases termed tauopathies. Aggregated tau forms neurofibrillary tangles in these pathologies, but little is certain about the function of tau or its mode of involvement in pathogenesis. Neuronal iron accumulation has been observed pathologically in the cortex in Alzheimer's disease, the substantia nigra (SN) in Parkinson's disease and various brain regions in the tauopathies. Here we report that tau-knockout mice develop age-dependent brain atrophy, iron accumulation and SN neuronal loss, with concomitant cognitive deficits and parkinsonism. These changes are prevented by oral treatment with a moderate iron chelator, clioquinol. Amyloid precursor protein (APP) ferroxidase activity couples with surface ferroportin to export iron, but its activity is inhibited in Alzheimer's disease, thereby causing neuronal iron accumulation. In primary neuronal culture, we found loss of tau also causes iron retention, by decreasing surface trafficking of APP. Soluble tau levels fall in affected brain regions in Alzheimer's disease and tauopathies, and we found a similar decrease of soluble tau in the SN in both Parkinson's disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. These data suggest that the loss of soluble tau could contribute to toxic neuronal iron accumulation in Alzheimer's disease, Parkinson's disease and tauopathies, and that it can be rescued pharmacologically.
Ceruloplasmin is an iron-export ferroxidase that is abundant in plasma and also expressed in glia. We found a ∼80% loss of ceruloplasmin ferroxidase activity in the substantia nigra of idiopathic Parkinson disease (PD) cases, which could contribute to the pro-oxidant iron accumulation that characterizes the pathology. Consistent with a role for ceruloplasmin in PD etiopathogenesis, ceruloplasmin knockout mice developed parkinsonism that was rescued by iron chelation. Additionally, peripheral infusion of ceruloplasmin attenuated neurodegeneration and nigral iron elevation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model for PD. These findings show, in principle, that intravenous ceruloplasmin may have therapeutic potential in PD.
Ceruloplasmin is a ferroxidase that interacts with ferroportin to export cellular iron, but is not expressed in neurons. We recently reported that the amyloid precursor protein (APP) is the analogous iron-exporting chaperone for neurons and other cells. The ferroxidase activity of APP has since been called into question. Using a triplex Fe2+ oxidation assay, we analyzed the activity of a soluble form of APP (sAPPα) within a buffer of physiological pH and anionic charge, and determined that iron oxidation originated from phosphate. Using various techniques such as flow-cytometry to measure surface presented proteins, we confirmed that endogenous APP is essential for ferroportin persistence on the neuronal surface. Therefore, despite lacking ferroxidase activity, APP still supports iron export from neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.