Aim:We evaluated the relative importance of geographical and environment variables for taxonomic, phylogenetic and functional β-diversity of phyllostomid bats along the entire Amazon biome and specifically in the lowlands.Location: Amazon biome.Taxon: Chiroptera.
Methods:We carried out a bibliographic review and compiled a wide and unprecedented database of 106 phyllostomid bat species at 102 sites throughout the Amazon biome. For all possible pairs of sites in both datasets, we estimated the Jaccard pairwise dissimilarity, that is, β-diversity, considering its three dimensions-taxonomic, phylogenetic and functional-for its two components-turnover (substitution of species) and differences in species richness. The association between dissimilarity measurements and geographical and environment variables was assessed using multiple regressions on distance matrices (MRM).
Results:We found that turnover and differences in species richness had similar contributions to the taxonomic β-diversity. However, for phylogenetic and functional β-diversity, lineages and functions richness differences contribute slightly more than
Across the globe, millions of hectares of native vegetation have been replaced by commercial plantations, with negative consequences for biodiversity. The effects of the replacement of native vegetation with commercial plantations on the functional and phylogenetic diversity of bat assemblages remain understudied, and most studies have focused exclusively on the taxonomic component of diversity. Here, we investigate how the replacement of natural savannahs by acacia plantations affects the α- and β-diversity of bat assemblages. We sampled bats, using mist-nets at ground level, in natural forest, savannah areas and acacia plantations, in the Lavrados de Roraima in the northern Brazilian Amazon. Our results show that, in general, acacia is less diverse than native forests in terms of taxonomic and functional diversity, and is also less taxonomically diverse than the savannah matrix which it substitutes. The observed patterns of α- and β-diversity found in the present study are in large part driven by the superabundance of one generalist and opportunistic species, Carollia perspicillata, in the acacia plantations. Taken together, our results show that the replacement of areas of natural savannah by acacia plantations causes a regional loss in diversity across all diversity dimensions: taxonomic, functional and phylogenetic. However, further studies are required to fully understand the ecological and conservation implications of this landscape change.
Context
Analyze the multiple dimensions of biodiversity under a local and landscape lens in natural habitats, such as Amazonian savannas, is fundamental for the conservation of species and ecosystems.
Objectives
We aim to explore how landscape forest cover and patch-level variables affect the patterns of species abundance, functional traits, and taxonomic, functional and phylogenetic α-diversity of Phyllostomid bats in forest patches of the Savannas of Amapá, in both the wet and dry seasons.
Methods
We used mist nets to survey bats in 26 forest patches. We also quantified forest cover in buffers of 500, 1000, 1500, 2000 and 2500 m around each patch, and tree height, basal area, canopy cover, and vegetation clutter in the understorey at the patch level. We used hierarchical partitioning to relate the different indices with our predictor variables.
Results
Taxonomic, functional and phylogenetic diversity in the wet season increased with the proportion of forest cover in the 2500 m buffer. Vegetation clutter was negatively related to taxonomic and functional diversity in the wet season. In the dry season, average tree height positively affected taxonomic and functional diversity. Patch-level variables were more important than forest cover in explaining the average functional traits in both seasons.
Conclusion
We found seasonal variation in the relationships between components of bat diversity and different drivers. Since both forest cover in the landscape and patch-level variables are important for Phyllostomid bat diversity, conservation plans should consider forest conservation at the landscape level and maintenance of forest patch quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.