The sorption curve is an essential feature for the modelling of heat and mass transfer in porous building materials. Several models have been proposed in the literature to represent the amount of moisture content in the material according to the water activity (or capillary pressure) level. These models are based on analytical expressions and few parameters that need to be estimated by inverse analysis. This article investigates the reliability of eight models through the accuracy of the estimated parameters. For this, experimental data for a wood fibre material are generated with special attention to the stop criterion to capture long time kinetic constants. Among five sets of measurements, the best estimate is computed. The reliability of the models is then discussed. After proving the theoretical identifiability of the unknown parameters for each model, the primary identifiability is analysed. It evaluates whether the parameters influence on the model output is sufficient to proceed the parameter estimation with accuracy. For this, a continuous derivative-based approach is adopted. Seven models have a low primary identifiability for at least one parameter. Indeed, when estimating the unknown parameters using the experimental observations, the parameters with low primary identifiability exhibit large uncertainties. Finally, an Approximation Bayesian Computation algorithm is used to simultaneously select the best model and estimate the parameters that best represent the experimental data. The thermodynamic and Feng-Xing models, together with a proposed model in this work, were the best ones selected by this algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.