An intercalated nanocomposite made of montmorillonite nanoclay, MMT, and poly(trimethylene terephthalate), PTT, was produced by twin screw extrusion and characterized by wide angle X‐ray diffraction, WAXD, and transmission electron microscopy, TEM. The quiescent isothermal and non‐isothermal and the flow‐induced crystallization of the nanocomposite were studied by differential scanning calorimetry, DSC, polarized light optical microscopy, PLOM, and rheometry. The quiescent results showed that the nanoclay acted as an efficient nucleating agent for the PTT, which result in an anticipation of the transition temperature between regimes II and III of crystallization. The fold interfacial free energy, σe, of the PTT in the nanocomposite during regime III was lower than in the pure state; that is, the pure PTT developed spherulites, whereas in the nanocomposite it produced a paracrystalline morphology. Under shear rate, the total times for crystallization in the nanocomposite were higher than in the pure PTT. In flow‐induced crystallization, a fibrillar nucleus must be formed as a result of chain orientation. In the nanocomposite, chain orientation only occurred after the percolated structure was broken. Therefore, the formation of a fibrillar nucleus in the nanocomposite took more time, which increased the total crystallization time. Inc. J Polym Sci Part B: Polym Phys 48: 113–127, 2010
Nanocomposites of polyetheretherketone (PEEK) and hydroxyapatite (HA) nanoparticles treated with a silane coupling agent were successfully prepared by twin screw extrusion and injection molding. Some of the samples were annealed after the injection molding. The silane treatment promoted an improvement of the short-and long-term mechanical properties of the nanocomposites. A higher stress and a six times higher deformation at break and a higher impact strength were observed in the silane-treated nanocomposites when compared to the nontreated ones. The number of cycles to fail of the treated nanocomposites was almost 200% higher than the number of cycles to fail of the nontreated samples. The treatment also decreased the glass transition temperature and amount of crystallinity of the samples. This improvement in mechanical properties obtained from the silane treatment was attributed to the strengthening of the PEEK/HA interfacial bond, to the plasticization of the PEEK matrix by silane oligomers produced during the processing and to a better dispersion of the HA nanoparticles within the PEEK matrix. Samples annealing, however, diminished all these properties due to the increase in crystallinity. Studies of the short-and long-term mechanical properties of these nanocomposites under physiological conditions and of the proliferation of stem cells are under way. V C 2016 Wiley Periodicals, Inc. J.Appl. Polym. Sci. 2017, 134, 44476.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.