Abstract. Content-Centric Networking (CCN) research addresses the mismatch between the modern usage of the Internet and its outdated architecture. Importantly, CCN routers may locally cache frequently requested content in order to speed up delivery to end users. Thus, the issue of caching strategies arises, i.e., which content shall be stored and when it should be replaced. In this work, we employ novel techniques towards intelligent administration of CCN routers that autonomously switch between existing strategies in response to changing content request patterns. In particular, we present a router architecture for CCN networks that is controlled by rule-based stream reasoning, following the recent formal framework LARS which extends Answer Set Programming for streams. The obtained possibility for flexible router configuration at runtime allows for faster experimentation and may thus help to advance the further development of CCN. Moreover, the empirical evaluation of our feasibility study shows that the resulting caching agent may give significant performance gains.
Software exploitation has been proven to be a lucrative business for cybercriminals. Unfortunately, protecting software against attacks is a long-lasting endeavor that is still under active research. However, certain software-hardening schemes are already incorporated into current compilers and are actively used to make software exploitation a complicated procedure for the adversaries. Stack canaries are such a protection mechanism. Stack canaries aim to prevent control flow hijack by detecting corruption of a specific value on the program's stack. Careful design and implementation of this conceptually straightforward mechanism is crucial to defeat stack-based control flow detours. In this paper, we examine 17 different stack canary implementations across multiple versions of the most popular Operating Systems running on various architectures. We systematically compare critical implementation details and introduce one new generic attack vector which allows bypassing stack canaries on current Linux systems running up-to-date multi-threaded software altogether. We release an open-source framework (CookieCrumbler ) that identifies the characteristics of stack canaries on any platform it is compiled on and we propose mitigation techniques against stack-based attacks. Although stack canaries may appear obsolete, we show that when they are used correctly, they can prevent intrusions which even the more sophisticated solutions may potentially fail to block.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.