Since the beginning of the satellite era, the only documented tropical cyclone over the western South Atlantic Ocean (SAO) has been Catarina, which occurred in March 2004. However, this system resulted from a tropical transition (TT), when a dipole blocking-pattern at the middle-upper levels of the atmosphere contributed to decreasing the vertical wind shear over an extratropical cyclone (McTaggart-Cowan et al., 2006; Pezza & Simmonds, 2005). Fifteen years after Catarina, in March 2019, the Brazilian Navy registered Iba, the first pure tropical cyclogenesis over tropical western SAO (∼16.5°S). Iba is an indigenous name previously established by the Brazilian Navy (NORMAN, 2018). As this system has not yet been described in the literature, it is the purpose of this study. The low frequency of tropical systems over the SAO has been explained by the unfavorable climate conditions for tropical cyclogenesis such as environmental vertical wind shear stronger than 10 m s −1 in the 850-200 hPa layer and sea surface temperature (SST) colder than 26°C (Gray, 1968; Pezza & Simmonds, 2005). On the other hand, the combination of the main environmental predictors for tropical cyclogenesis (absolute vorticity at 850 hPa, relative humidity at 700 hPa, potential intensity in terms of maximum wind speed, and the vertical wind shear at 850-200 hPa layer) in the Genesis Potential Index (GPI; K. A. Emanuel & Nolan, 2004) show some favorable conditions for tropical cyclogenesis near southeastern Brazil (Walsh et al., 2013). McTaggart-Cowan et al. (2013, 2015) also suggest that the SAO climate conditions are most likely to favor weak and strong TT than pure tropical cyclogenesis. The definition of weak and strong TT was introduced by Davis and Bosart (2003, 2004). The weak TT occurs in an environment with a weak upper-level disturbance and moderate lower-level thermal gradients, while the strong TT takes place in the presence of strong upper-level disturbance and strong lower-level thermal gradients (McTaggart-Cowan et al., 2013). Hodges et al. (2017), comparing six reanalysis datasets and IBTrACS (observed data) from 1979 to 2012, showed one tropical cyclone per year over the SAO in the observations and ∼7 cyclones per year in each
No dia 19 de agosto de 2019, a cidade de São Paulo (SP) presenciou um evento incomum que deixou grande parte da população assustada com o ocorrido. Próximo às 15 h, o céu na cidade de São Paulo escureceu tornando o dia em noite. Diante desse contexto, o objetivo do estudo é descrever o ambiente atmosférico associado ao evento registrado em São Paulo. Para tanto, foram utilizados diferentes dados: cartas sinóticas e análises de modelos de tempo do Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), imagens de satélite, dados de diferentes modelos, monitoramento da qualidade do ar Companhia Ambiental do Estado de São Paulo (CETESB) e notícias veiculadas pela mídia. Nos dias prévios ao 19 de agosto foram documentadas queimadas na Amazônia e a presença de ventos em baixos níveis da atmosfera que auxiliavam o transporte do material particulado das regiões de queimadas para o sul do país. No dia 19, com a chegada de um sistema frontal em São Paulo, os ventos em baixos níveis passaram a escoar da Amazônia em direção ao sudeste, transportando o material particulado para tal região. O material particulado (pluma de fumaça) não foi registrado em superfície, já que as estações da CETESB não documentaram padrão anômalo nas observações. Sugere-se que o material particulado serviu como núcleo de condensação de nuvem, gerando muitas gotículas de nuvem que refletiram radiação para fora da atmosfera, deixando escura a tarde de São Paulo.
At the end of June 2020, an explosive extratropical cyclone was responsible for an environment in which a squall line developed and caused life and economic losses in Santa Catarina state, southern Brazil. The aims of this case study are the following: (a) to describe the drivers of the cyclogenesis; (b) to investigate through numerical simulations the contribution of sea–air interaction to the development of the cyclone as an explosive system; and (c) to present the physical properties of the clouds associated with the squall line. The cyclogenesis started at 1200 UTC on 30 June 2020 on the border of southern Brazil and Uruguay, having a trough at middle-upper levels as a forcing, which is a common driver of cyclogenesis in the studied region. In addition, the cyclone’s lifecycle followed Bjerknes and Solberg’s conceptual model of cyclone development. A special feature of this cyclone was its fast deepening, reaching the explosive status 12 h after its genesis. A comparison between numerical experiments with sensible and latent turbulent heat fluxes switched on and off showed that the sea–air interaction (turbulent heat fluxes) contributed to the cyclone’s deepening leading it to the explosive status. The cold front, which is a component of the cyclone, favored the development of a pre-frontal squall line, responsible for the rough weather conditions in Santa Catarina state. While satellite images do not clearly show the squall line located ahead of the cold front in the cyclone wave due to their coarse resolution, radar reflectivity data represent the propagation of the squall line over southern Brazil. On 30 June 2020, the clouds in the squall line had more than 10 km of vertical extension and a reflectivity higher than 40 dBZ in some parts of the storm; this is an indicator of hail and, consequently, is a required condition for storm electrification. In fact, electrical activity was registered on this day.
A cidade de Santa Rita do Sapucaí, localizada no sul do Estado de Minas Gerais (MG), no dia 24 de outubro de 2019 a cerca de 2000 UTC foi atingida por uma tempestade de granizo que gerou diversos danos ao município. O presente estudo avalia as condições meteorológicas que propiciaram a ocorrência da tempestade com enfoque multiescala (sinótica, mesoescala e microfísica da tempestade). A análise sinótica mostrou que a tempestade se desenvolveu como uma resposta da dinâmica (divergência do vento em altos níveis que propiciou os movimentos ascendentes na coluna atmosférica) e termodinâmica (instabilidade) da atmosfera. A relação entre CAPE e cisalhamento vertical do vento, bem como imagens de radar, indicam que a tempestade foi multicelular. A tempestade foi caracterizada por topos profundos, intensa produção de gelo e alta taxa de relâmpagos intra-nuvem (até 160 por min) e nuvem-solo (até 20 por min) antes da ocorrência do granizo, indicando o potencial do uso de dados de relâmpagos como um parâmetro preditor da ocorrência de granizo em superfície.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.