During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.
Ischemic preconditioning (IPC) of one or two limbs improves performance of exercise that recruits the same limb(s). However, it is unclear whether IPC application to another limb than that in exercise is also effective and which mechanisms are involved. We investigated the effect of remote IPC (RIPC) on muscle fatigue, time to task failure, forearm hemodynamics, and deoxygenation during handgrip exercise. Thirteen men underwent RIPC in the lower limbs or a control intervention (CON), in random order, and then performed a constant load rhythmic handgrip protocol until task failure. Rates of contraction and relaxation (ΔForce/ΔTime) were used as indices of fatigue. Brachial artery blood flow and conductance, besides forearm microvascular deoxygenation, were assessed during exercise. RIPC attenuated the slowing of contraction and relaxation throughout exercise (P < 0.05 vs CON) and increased time to task failure by 11.2% (95% confidence interval: 0.7-21.7%, P <0.05 vs CON). There was no significant difference in blood flow, conductance, and deoxygenation between conditions throughout exercise (P > 0.05). In conclusion, RIPC applied to the lower limbs delayed the development of fatigue during handgrip exercise, prolonged time to task failure, but was not accompanied by changes in forearm hemodynamics and deoxygenation.
IPC did not change aerobic metabolism parameters, whereas improved endurance performance. The IPC improvement, however, did not surpass the effect of a placebo intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.