Monolayers of oppositely charged colloids form versatile selforganizing substrates, with a recognized potential to tailor functional interfaces. In this study, a coarse-grained Monte Carlo simulation approach is laid out to assess the structural properties of Gibbs monolayers, in which one of the counterionic species is partially soluble. It is shown that the composition of this type of monolayer varies in a nontrivial way with surface coverage, as a result of a subtle competition between steric and attractive forces. In the regime of weak electrostatic interactions, the monolayer is depleted of soluble colloids as the surface coverage is increased. At sufficiently strong interactions, the incorporation of soluble colloids is favored at high surface coverage, leading to a re-entrant-type behavior in the expansion/compression isotherms. Strong electrostatic interactions also favor the clustering of the colloids, leading to a range of aggregated configurations, qualitatively resembling those obtained in previous experimental studies. At sufficiently high surface coverage, the clusters collapse into a gel-like percolated mesoscopic structure and eventually into a square crystal lattice configuration. Such interfacial structures are in good agreement with the ones observed in the few experimental investigations available for these systems, showing that the simple methodology introduced in this study provides a valuable predictive framework to anticipate the landscape of interfacial structures that may be produced with oppositely charged colloids, through the modulation of pair interactions and thermodynamical conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.