Impedance spectroscopy is a powerful electrochemical small‐perturbation technique that provides dynamic electrical data in solar cells. This technique has been widely used to characterize dye‐sensitized solar cells and perovskite solar cells (PSCs). Physical parameters are normally obtained by fitting to an equivalent circuit, composed of electrical elements which theoretically correspond to physical processes involved in the photoconversion process. A variety of equivalent circuits to model the impedance spectra of PSCs are commonly used by different research groups. In this work, we evaluate their performance and adequacy. We demonstrate the analytical and numerical equivalence of impedance expressions for Voight, matryoshka, and hybrid circuits, which are used to fit a typical impedance spectrum of a PSC and compare the resulting parameters to the empirical values obtained without any equivalent circuit. The numerical equivalence can be demonstrated by using two‐ and three‐component impedance spectra. In contrast, Maxwell‐type equivalent circuits reveal parameters that have a more complex relation to empirical values. The presence of inductive effects such as “loops” and “negative tails” in impedance spectra are also discussed in terms of negative values of resistances and capacitances. We propose a general protocol to analyze impedance data of PSCs and to extract useful information from them.
Recent studies unveiled the Fickian yet non-Gaussian (FNG) dynamics of many soft matter systems and suggested this phenomenon as a general characteristic of the diffusion in complex fluids. In particular, it was shown that the distribution of particle displacements in Fickian diffusion is not necessarily Gaussian, and thus the Einstein and Smoluchowski theory describing the Brownian motion of individual objects in a fluid would not be applicable. In this Letter, we investigate whether the FNG dynamics so far reported in gels, granular materials, biological and active matter systems, is also a distinctive feature of colloidal liquid crystals. To this end, we perform Brownian Dynamics simulations of oblate and prolate colloidal particles in the nematic phase. We detect a normal and Gaussian dynamics at short and long time scales, whereas, at intermediate time scales, a non-Fickian and non-Gaussian dynamics is found. Additionally, we revisit the nature of the decay of the self-van Hove correlation function, Gs(r, t), which is here approximated with an ellipsoidal, rather than spherical, Gaussian distribution. The new expression that we propose is able to correctly assess the Gaussian dynamics in inherently anisotropic systems, like liquid crystals, where the standard Gaussian approximation of Gs(r, t) would fail.
It is well known that understanding the transport properties of liquid crystals (LCs) is crucial to optimise their performance in a number of technological applications. In this work, we analyse the effect of shape anisotropy on the diffusion of rod-like and disk-like particles by Brownian dynamics simulations. To this end, we compare the dynamics of prolate and oblate nematic LCs incorporating particles with the same infinite-dilution translational or rotational diffusion coefficients. Under these conditions, which are benchmarked against the standard case of identical aspect ratios, we observe that prolate particles display faster dynamics than oblate particles at short and long timescales. Nevertheless, when compared at identical infinite-dilution translational diffusion coefficients, oblate particles are faster than their prolate counterparts at short-to-intermediate timescales, which extend over almost three time decades. Both oblate and prolate particles exhibit an anisotropic diffusion with respect to the orientation of the nematic director. More specifically, prolate particles show a fast diffusion in the direction parallel to the nematic director, while their diffusion in the direction perpendicular to it is slower. By contrast, the diffusion of oblate particles is faster in the plane perpendicular to the nematic director. Finally, in the light of our recent study on the longtime Gaussian and Fickian diffusion in nematic LCs, we map the decay of the autocorrelation functions and their fluctuations over the timescales of our simulations to ponder the existence of mobile clusters of particles and the occurrence of collective motion.
Monolayers of oppositely charged colloids form versatile selforganizing substrates, with a recognized potential to tailor functional interfaces. In this study, a coarse-grained Monte Carlo simulation approach is laid out to assess the structural properties of Gibbs monolayers, in which one of the counterionic species is partially soluble. It is shown that the composition of this type of monolayer varies in a nontrivial way with surface coverage, as a result of a subtle competition between steric and attractive forces. In the regime of weak electrostatic interactions, the monolayer is depleted of soluble colloids as the surface coverage is increased. At sufficiently strong interactions, the incorporation of soluble colloids is favored at high surface coverage, leading to a re-entrant-type behavior in the expansion/compression isotherms. Strong electrostatic interactions also favor the clustering of the colloids, leading to a range of aggregated configurations, qualitatively resembling those obtained in previous experimental studies. At sufficiently high surface coverage, the clusters collapse into a gel-like percolated mesoscopic structure and eventually into a square crystal lattice configuration. Such interfacial structures are in good agreement with the ones observed in the few experimental investigations available for these systems, showing that the simple methodology introduced in this study provides a valuable predictive framework to anticipate the landscape of interfacial structures that may be produced with oppositely charged colloids, through the modulation of pair interactions and thermodynamical conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.