Freely available global digital elevation models (DEMs) are important inputs for many research fields and applications. During the last decade, several global DEMs have been released based on satellite data. ASTER and SRTM are the most widely used DEMs, but the more recently released, AW3D30, TanDEM-X and MERIT, are being increasingly used. Many researchers have studied the quality of these DEM products in recent years. However, there has been no comprehensive and systematic evaluation of their quality over areas with variable topography and land cover conditions. To provide this comparison, we examined the accuracy of six freely available global DEMs (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM) in four geographic regions with different topographic and land use conditions. We used local high-precision elevation models (Light Detection and Ranging (LiDAR), Pleiades-1A) as reference models and all global models were resampled to reference model resolution (1m). In total, 608 million 1x1 m pixels were analyzed. To estimate the accuracy, we generated error rasters by subtracting each reference model from the corresponding global DEM and calculated descriptive statistics for this difference (e.g., median, mean, root-mean-square error (RMSE)). We also assessed the vertical accuracy as a function of the slope, slope aspect, and land cover. We found that slope had the strongest effect on DEM accuracy, with no relationship for slope aspect. The AW3D30 was the most robust and had the most stable performance in most of the tests and is therefore the best choice for an analysis of multiple geographic regions. SRTM and NASADEM also performed well where available, whereas NASADEM, as a successor of SRTM, showed only slight improvement in comparison to SRTM. MERIT and TanDEM-X also performed well despite their lower spatial resolution.
cluster. Points with a high positive Z-score (≥1.645) and a significant P value (i.e., hot spots) represent clusters of large forest loss areas, whereas points with a low negative Z-score (≤-1.645) and a significant P value (i.e., cold spots) represent clusters of small forest loss areas. We performed the hotspot analysis separately for each year. Active fire data. To estimate the forest loss potentially caused by fire, we used the Fire Information for Resource Management System (FIRMS) active fire product 68 which is derived from the MODIS sensor aboard the NASA Aqua and Terra satellites. We used the MCD14ML (collection 6) product for active fire data from 2001 to 2017. This data is produced based on the daily MODIS middle-infrared and thermal infrared bands, which are compared with reference data in order to identify pixels with an active fire. We used the definition "potentially caused by fire" for two reasons. The first one relates to the difference in spatial resolution between the forest loss data (30 m) and the MODIS-based product (1 km), which is a limitation of our results because a fire could be located in any area within the 1-km MODIS pixel. The second relates to the fact that fire is used as a management tool for purposes such as burning the residual vegetation that remains or begins to grow after deforestation, which means that it was not directly responsible for the forest loss. We combined the annual (FIRMS) active fire points with the forest loss patches (polygons) during the same year in order to identify forest loss patches that contained one or more FIRMS active fire points within their borders. By summarizing the area of these forest loss patches, we obtained the total area of forest loss that had been potentially caused by fire.
<p><strong>Abstract.</strong> The monitoring of agricultural activities at a regular basis is crucial to assure that the food production meets the world population demands, which is increasing yearly. Such information can be derived from remote sensing data. In spite of topic’s relevance, not enough efforts have been invested to exploit modern pattern recognition and machine learning methods for agricultural land-cover mapping from multi-temporal, multi-sensor earth observation data. Furthermore, only a small proportion of the works published on this topic relates to tropical/subtropical regions, where crop dynamics is more complicated and difficult to model than in temperate regions. A major hindrance has been the lack of accurate public databases for the comparison of different classification methods. In this context, the aim of the present paper is to share a multi-temporal and multi-sensor benchmark database that can be used by the remote sensing community for agricultural land-cover mapping. Information about crops in situ was collected in Luís Eduardo Magalhães (LEM) municipality, which is an important Brazilian agricultural area, to create field reference data including information about first and second crop harvests. Moreover, a series of remote sensing images was acquired and pre-processed, from both active and passive orbital sensors (Sentinel-1, Sentinel-2/MSI, Landsat-8/OLI), correspondent to the LEM area, along the development of the main annual crops. In this paper, we describe the LEM database (crop field boundaries, land use reference data and pre-processed images) and present the results of an experiment conducted using the Sentinel-1 and Sentinel-2 data.</p>
Phenological responses of vegetation to global warming impact ecosystem gross primary production and evapotranspiration. However, high resolution and large spatial scale observational evidence of such responses in undisturbed core forest areas is lacking. Here, we analyse MODIS satellite data to assess monthly trends in gross primary productivity and evapotranspiration across undisturbed core forest areas in Europe between 2000 and 2020. Both parameters increased during the early spring and late autumn in nearly half of the total undisturbed core forest area (3601.5 km2). Enhanced productivity drove increased water-use-efficiency (the ratio of gross primary productivity to evapotranspiration). However, productivity increases during spring and autumn were not sufficient to compensate for summertime decreases in 25% of core forest areas. Overall, 20% of total gross primary productivity across all European forest core areas was offset by forest areas that exhibited a net decrease in productivity.
Remote sensing (RS) technology is a viable complementary alternative to current agriculture surveying methods. RS data spectral information is the main variable used for several purposes, such as crop type identification. However, different management practices (MP) adopted in crop cultivation may alter its spectral characteristics. The objective of this work is to analyze the spectral-temporal profile (STP) variation of soybean, maize and sugarcane cultivated under different MP. We used time series of the six spectral bands of the OLI/Landsat-8 sensor and of two vegetation indexes (VI) to investigate the intraspecific variation (same crop specie) and the interspecific variation (different crop species). We applied hierarchical cluster analyses to determine the crop´s STP variation. The bands results were more efficient than the VI. This shows that despite the widely use of VI, better results are retrieved when using the bands STP, which also allows differentiating and analyzing crops cultivated under different MP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.