Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.
Human studies addressing the long-term effects of peripheral retinal degeneration on visual cortical function and structure are scarce. Here we investigated this question in patients with Retinitis Pigmentosa (RP), a genetic condition leading to peripheral visual degeneration. We acquired functional and anatomical magnetic resonance data from thirteen patients with different levels of visual loss and twenty-two healthy participants to study primary (V1) visual cortical retinotopic remapping and cortical thickness. We identified systematic visual field remapping in the absence of structural changes in the primary visual cortex of RP patients. Remapping consisted in a retinotopic eccentricity shift of central retinal inputs to more peripheral locations in V1. Importantly, this was associated with changes in visual experience, as assessed by the extent of the visual loss, with more constricted visual fields resulting in larger remapping. This pattern of remapping is consistent with expansion or shifting of neuronal receptive fields into the cortical regions with reduced retinal input. These data provide evidence for functional changes in V1 that are dependent on the magnitude of peripheral visual loss in RP, which may be explained by rapid cortical adaptation mechanisms or long-term cortical reorganization. This study highlights the importance of analyzing the retinal determinants of brain functional and structural alterations for future visual restoration approaches.
Retinitis Pigmentosa is a group of hereditary retinal dystrophy disorders associated with progressive peripheral visual field loss. The impact of this retinal loss in cortical gray matter volume has not been addressed before in Retinitis Pigmentosa patients with low vision. Voxel-based morphometry was applied to study whole brain gray matter volume changes in 27 Retinitis Pigmentosa patients with partially preserved vision and 38 age-and gender-matched normally sighted controls to determine whether peripheral visual loss can lead to changes in gray matter volume. We found significant reductions in gray matter volume that were restricted to the occipital cortex of patients. The anteromedial pattern of reduced gray matter volume in visual primary and association cortices was significantly correlated with the extent of the peripheral visual field deficit in this cohort. Moreover, this pattern was found to be associated with the extent of visual field loss. In summary, we found specific visual cortical gray matter loss in Retinitis Pigmentosa patients associated with their visual function profile. The spatial pattern of gray matter loss is consistent with disuse-driven neuronal atrophy which may have clinical implications for disease management, including prosthetic restoration strategies.Retinitis Pigmentosa (RP) is an important cause of human visual disability characterized by early peripheral visual field defects (VFD). The non-syndromic form of RP has a worldwide prevalence of about 1/4000 individuals 1-4 . It is classified as an inherited retinal dystrophy disorder which is characterized by photoreceptor degeneration and subsequent visual loss 3 . In the typical form of RP, retinal degeneration affects rod photoreceptors in the mid-periphery, advancing towards the macula and fovea with cone photoreceptors affected only in later stages. Patients initially present with nyctalopia, followed by the progressive peripheral VFD, and eventually blindness. The age of onset is highly variable, ranging from childhood to mid-adulthood 1, 2 .Voxel-based morphometry (VBM) is a well-established technique 5-7 that has been used to report local gray matter (GM) volume alterations in several disorders leading to VFD [8][9][10][11][12][13][14][15][16][17][18][19] . However, some of these studies have only focused on patients whose late VFD had already evolved to blindness and include multiple neuro-ophthalmological pathologies within the same study. Thus, different mechanisms of visual loss and putative brain adaptation were likely present [16][17][18] . VBM studies in patients with partially preserved vision due to VFD have mainly concerned glaucoma, also characterized by peripheral VFD, or age-related macular degeneration (AMD) characterized by central or pericentral VFD [8][9][10][11][12][13][14][15] . GM loss has been reported in the visual cortex of AMD and glaucoma patients in cortical representations matching the retinal lesion projection zones 8 . Several other studies have found cortical changes, mainly volumetric reduct...
Glucose metabolism is pivotal for energy and neurotransmitter synthesis and homeostasis, particularly in Glutamate and GABA systems. In turn, the stringent control of inhibitory/excitatory tonus is known to be relevant in neuropsychiatric conditions. Glutamatergic neurotransmission dominates excitatory synaptic functions and is involved in plasticity and excitotoxicity. GABAergic neurochemistry underlies inhibition and predicts impaired psychophysical function in diabetes. It has also been associated with cognitive decline in people with diabetes. Still, the relation between metabolic homeostasis and neurotransmission remains elusive. Two 3T proton MR spectroscopy studies were independently conducted in the occipital cortex to provide insight into inhibitory/excitatory homeostasis (GABA/Glutamate) and to evaluate the impact of chronic metabolic control on the levels and regulation (as assessed by regression slopes) of the two main neurotransmitters of the CNS in type 2 diabetes (T2DM) and type 1 diabetes (T1DM). Compared to controls, participants with T2DM showed significantly lower Glutamate, and also GABA. Nevertheless, higher levels of GABA/Glx (Glutamate+Glutamine), and lower levels of Glutamate were associated with poor metabolic control in participants with T2DM. Importantly, the relationship between GABA/Glx and HbA 1c found in T2DM supports a relationship between inhibitory/excitatory balance and metabolic control. Interestingly, this neurometabolic profile was undetected in T1DM. In this condition we found strong evidence for alterations in MRS surrogate measures of neuroinflammation (myo-Inositol), positively related to chronic metabolic control. Our results suggest a role for Glutamate as a global marker of T2DM and a sensitive marker of glycemic status. GABA/Glx may provide a signature of cortical metabolic state in poorly controlled patients as assessed by HbA 1c levels, which indicate long-term blood Glucose control. These findings are consistent with an interplay between abnormal neurotransmission and metabolic control in particular in type 2 diabetes thereby revealing dissimilar contributions to the pathophysiology of neural dysfunction in both types of diabetes.
Eur J Ophthalmol 2015; 00 (00): 000-000 ORIGINAL ARTICLEa lo a r sp ci call sign to incr as th rang o ocus an thus impro isual ualit at int rm iat istanc s (2) E n though this approach has pro n succ ss ul to som t nt (2-) pati nts ma ultimat l b p n nt on sp ctacl s or cl ar int rm iat ision (5) his probl m is particularl signi cant in or ing-ag pati nts ho o n p r orm rapi l alt rnating ar an clos -up tas s or sustain long or at n ar to int rm iat istanc ( ) noth r important ra bac o multi ocal O implantation is th lopm nt o photic ph nom na such as glar halos an a cr as in contrast s nsiti it sp ciall un r im light con itions ( ) h s can n gati l a ct ail li acti iti s limiting th pati nt s abilit to p r orm th m an thus acting th pati nt s ualit o li ( ) lthough impro m nts in O sign ha limit th s s mptoms in lat g n ration multi ocal O s th ar still among th most r u nt r asons or issatis action a r multi ocal O implantation ( -10) c ntl a n multi ocal mo
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.