BackgroundNeurofibromatosis type 1 (NF1) affects several areas of cognitive function including visual processing and attention. We investigated the neural mechanisms underlying the visual deficits of children and adolescents with NF1 by studying visual evoked potentials (VEPs) and brain oscillations during visual stimulation and rest periods.MethodsElectroencephalogram/event-related potential (EEG/ERP) responses were measured during visual processing (NF1 n = 17; controls n = 19) and idle periods with eyes closed and eyes open (NF1 n = 12; controls n = 14). Visual stimulation was chosen to bias activation of the three detection mechanisms: achromatic, red-green and blue-yellow.ResultsWe found significant differences between the groups for late chromatic VEPs and a specific enhancement in the amplitude of the parieto-occipital alpha amplitude both during visual stimulation and idle periods. Alpha modulation and the negative influence of alpha oscillations in visual performance were found in both groups.ConclusionsOur findings suggest abnormal later stages of visual processing and enhanced amplitude of alpha oscillations supporting the existence of deficits in basic sensory processing in NF1. Given the link between alpha oscillations, visual perception and attention, these results indicate a neural mechanism that might underlie the visual sensitivity deficits and increased lapses of attention observed in individuals with NF1.
Patients with MS have impairment on social cognition. Amygdala atrophy was the main predictor probably due to its central position within the "social brain" network.
These results indicate that a diffuse pattern of NAWM damage in MS contributes to social cognition impairment in the ToM domain, probably due to a mechanism of disconnection within the social brain network. Gray matter pathology is also expected to have an important role; thus further research is required to clarify the neural basis of social cognition impairment in MS.
Visual cortical plasticity induced by overt retinal lesions (scotomas) has remained a controversial phenomenon. Here we studied cortical plasticity in a silent model of retinal ganglion cell loss, documented by in vivo optical biopsy using coherence tomography. The cortical impact of non-scotomatous subtle retinal ganglion cell functional and structural loss was investigated in carriers of the mitochondrial DNA 11778G>A mutation causing Leber's hereditary optic neuropathy. We used magnetic resonance imaging (MRI) to measure cortical thickness and fMRI to define retinotopic cortical visual areas V1, V2 and V3 in silent carriers and matched control groups. Repeated Measures analysis of variance revealed a surprising increase in cortical thickness in the younger carrier group (below 21 years of age). This effect dominated in extrastriate cortex, and notably V2. This form of structural plasticity suggests enhanced plastic developmental mechanisms in extrastriate retinotopic regions close to V1 and not receiving direct retinocortical input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.