We discuss recent advances towards matter-wave interference experiments with free beams of metallic and dielectric nanoparticles. They require a brilliant source, an efficient detection scheme and a coherent method to divide the de Broglie waves associated with these clusters: We describe an approach based on a magnetron sputtering source which ejects an intense cluster beam with a wide mass dispersion but a small velocity spread of ∆v/v < 10%. The source is universal as it can be used with all conducting and many semiconducting or even insulating materials. Here we focus on metals and dielectrics with a low work function of the bulk and thus a low cluster ionization energy. This allows us to realize photoionization gratings as coherent matter-wave beam splitters and also to realize an efficient ionization detection scheme. These new methods are now combined in an upgraded Talbot-Lau interferometer with three 266 nm depletion gratings. We here describe the experimental boundary conditions and how to realize them in the lab. This next generation of near-field interferometers shall allow us to soon push the limits of matter-wave interference to masses up to 10 6 amu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.